Koopman Ensembles for Probabilistic Time Series Forecasting - Pôle AI & Ocean
Pré-Publication, Document De Travail Année : 2024

Koopman Ensembles for Probabilistic Time Series Forecasting

Résumé

In the context of an increasing popularity of data-driven models to represent dynamical systems, many machine learning-based implementations of the Koopman operator have recently been proposed. However, the vast majority of those works are limited to deterministic predictions, while the knowledge of uncertainty is critical in fields like meteorology and climatology. In this work, we investigate the training of ensembles of models to produce stochastic outputs. We show through experiments on real remote sensing image time series that ensembles of independently trained models are highly overconfident and that using a training criterion that explicitly encourages the members to produce predictions with high inter-model variances greatly improves the uncertainty quantification of the ensembles.
Fichier principal
Vignette du fichier
EUSIPCO2024_stochastic_Koopman-7.pdf (284.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04499908 , version 1 (11-03-2024)
hal-04499908 , version 2 (13-03-2024)

Licence

Identifiants

  • HAL Id : hal-04499908 , version 1

Citer

Anthony Frion, Lucas Drumetz, Guillaume Tochon, Mauro Dalla Mura, Abdeldjalil Aissa El Bey. Koopman Ensembles for Probabilistic Time Series Forecasting. 2024. ⟨hal-04499908v1⟩
751 Consultations
200 Téléchargements

Partager

More