Decoding techniques applied to the compilation of CNOT circuits for NISQ architectures
Résumé
Current proposals for quantum compilers require the synthesis and optimization of linear reversible circuits and among them CNOT circuits. Since these circuits represent a significant part of the cost of running an entire quantum circuit, we aim at reducing their size. In this paper we present a new algorithm for the synthesis of CNOT circuits based on the solution of the syndrome decoding problem. Our method addresses the case of ideal hardware with an all-to-all qubit connectivity and the case of near-term quantum devices with restricted connectivity. For both cases, we present benchmarks showing that our algorithm outperforms existing algorithms.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|