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Abstract

We use the theory of rationalizable choices to study the survival and
the extinction of types (or traits) in evolutionary OLG models. Two
properties of evolutionary processes are introduced: rationalizability by a
fitness ordering (i.e. only the most fit types survive) and interactivity (i.e.
a withdrawal of types affects the survival of other types). Those properties
are shown to be logically incompatible. We then examine whether the
evolutionary processes at work in canonical evolutionary OLG models
satisfy rationalizability or interactivity. We study n-types versions of the
evolutionary OLG models of Galor and Moav (2002) and Bisin and Verdier
(2001), and show that, while the evolutionary process at work in the
former is generally rationalizable by a fitness ordering, the opposite is
true for the latter, which exhibits, in general, interactivity.
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1 Introduction

Whereas standard overlapping generations (OLG) models, as developed by Al-
lais (1947), Samuelson (1958) and Diamond (1965), allow, by construction, for
age-heterogeneity within the population alive at a given time, growth theory has
recently paid particular attention to evolutionary OLG models, which exhibit
not only inter-cohort heterogeneity, but also intra-cohort heterogeneity.
Evolutionary OLG models describe the dynamics of intra-cohort heterogene-

ity in terms of the selection mechanism. The precise form of that selection
process depends on the economic environment considered, and, in particular,
on how types or traits are transmitted across generations. In those models,
types or traits are transmitted through various transmission mechanisms, such
as (effortless) hereditary transmission (Galor and Moav 2002, 2005), or trans-
mission through parental socialization effort (Bisin and Verdier 2000, 2001).
Evolutionary OLG models allow, thanks to intra-cohort heterogeneity, for the
replication of the complex dynamics exhibited by aggregated variables. Those
models were applied to various issues, such as the shift of growth regime (Ga-
lor and Moav 2002), the demographic transition (Galor and Moav 2005), the
dynamics of religions and marriage (Bisin et al 2004), and the evolution of
globalization and trade (Olivier et al 2008).

Whereas evolutionary OLG models have become increasingly used in (long-
run) macroeconomics, little attention has been paid so far to the formal proper-
ties of the evolutionary processes that are present in those models. The goal of
this paper is precisely to propose an exploration of the properties characterizing
the evolutionary mechanisms at work in evolutionary OLG models.
For that purpose, we develop a general framework to study the survival

and the extinction of types (or traits) within a population. We consider an
evolutionary process as a survival or selection process, that is, a process that
maps finite sets of types into non-empty subsets of types.
Although considering an evolutionary process as a selection process involves

a simplification, that reduction allows us to use the analytical tools of ratio-
nalizable choice theory to cast new light on evolutionary processes.1 Once an
evolutionary process is reduced to a selection out of a set of types, one can ask
whether there exists or not a fitness ordering defined on types, which could
rationalize the observed selection. An evolutionary process is rationalizable by
a fitness ordering when the selection is such that only the most fit types survive.
Rationalizability is an appealing concept to economists, because rational

choice theory is the basis of modern microeconomic theory. When considering
the selection of consumption baskets by an agent, economists study the ques-
tion of its rationalizability by a preference ordering, in line with the revealed

1The study of evolutionary processes as survival or selection processes constitutes a sim-
plification, because it focuses on the identification of the surviving types, and thus ignores the
proportions in which the different types survive. However, one can, following Parfit (1984,
p. 453-454), argue that, from the point of view of history, the most relevant difference is not
the one between a high or a low prevalence, but, rather, the difference between survival and
extinction.
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preferences approach pioneered by Samuelson (1938, 1948).2 In a similar way,
when considering evolutionary OLG models where some types or traits are se-
lected over time, it is tempting to investigate whether the associated selection
process is rationalizable by a fitness ordering or not. If an evolutionary process
is rationalizable by a fitness ordering, then that economy can be interpreted as
an environment where only the "most fit" types survive. If, on the contrary, the
evolutionary process is not rationalizable, then it does not make sense to say
that "only the most fit types survive" in that environment.
Although rationalizability is a plausible property to economists, the same

is not true for biologists. Indeed, following Darwin’s The Origin of Species
(Darwin 1859), a strong emphasis has been laid on the existence of interactions
between the different species or types.3 Those interactions play a major role
in the survival of some species, as well as in the extinction of other species.
Hence biology hardly supports the idea of rationalizability of an evolutionary
process by a fitness ordering; on the contrary, it points to another property of an
evolutionary process: interactivity. Interactivity captures the fact that the set of
surviving types is likely to vary with the composition of the initial population of
types. The reason is that different population groups interact with each others
in various ways, so that whether some type survives or becomes extinct may
depend on whether some other types are present in the population or not.4

Those two properties - rationalizability and interactivity - are plausible to,
respectively, economists and biologists. However, as we show in this paper, those
two properties are logically incompatible. An evolutionary process must satisfy
either rationalizability or interactivity, but cannot satisfy both properties. No
fitness ordering can rationalize an interactive evolutionary process.5

That impossibility result allows us, in a second stage, to distinguish, among
the existing evolutionary OLG models, between the ones satisfying rationaliz-
ability, and the ones satisfying interactivity. For that purpose, we review n-type
versions of some canonical evolutionary OLG models, relying either on (effort-
less) hereditary transmission mechanisms (Galor Moav 2002), or, alternatively,
on socialization mechanisms (Bisin Verdier 2001). We show that, while the evo-
lutionary process at work in the former is generally rationalizable by a fitness
ordering, the opposite is true for the latter, which exhibits, in general, interac-
tivity (except when the stationary distribution is an interior distribution).
This paper is organized as follows. Section 2 presents the framework, and

defines two properties of evolutionary processes: rationalizability by a fitness
ordering and interactivity. Section 3 demonstrates the non-existence of a ratio-
nalizable interactive evolutionary process. Section 4 reviews n-types versions
of Galor and Moav (2002) and Bisin and Verdier (2001), and examine whether

2For experimental applications, see Sippel (1997).
3See in particular Chapter 3 The Struggle for Existence, where Darwin highlights, by

means of various examples, the existence of interspecies interactions in the struggle against
extinction.

4 Interactions between types can be of various kinds: positive interactions (e.g. some types
helping other types to survive), or negative ones (e.g. struggle for survival between types).

5The non-existence of a fitness ordering was firstly studied by Cohen (1985), who applied
Arrow’s Impossibility Theorem (Arrow 1963) to the evolutionary context of species selection.
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the associated evolutionary processes satisfy rationalizability or interactivity.
Section 5 concludes.

2 A general framework

This section presents a theory of evolutionary processes as selection processes,
though which types or traits survive or become extinct over time.
Let us denote by P a non-empty set of types (or traits).6 Throughout the

paper, we assume that P has a finite cardinality. We denote by Ω the set of all
non-empty subsets of P , i.e. the set of all possible non-empty groups of types:

Ω = {N ⊆ P : N 6= ∅}

An evolutionary process is defined as follows.

Definition 1 An evolutionary process is a map S: Ω → Ω such that for all
N ∈ Ω, S(N) ⊆ N .

An evolutionary process can be interpreted as the selection or choice, from
a non-empty set of types, of a non-empty subset of types. For any set of types
N ∈ Ω, the set S(N), which is a subset of N , can be interpreted as the set of
surviving types. On the contrary, the set N\S(N) is the set of extinct types.

Considering an evolutionary process as a selection allows us to apply the
analytical tools of rationalizable choice theory to the study of evolutionary
processes.7 Actually, when considering an evolutionary process as a choice,
a first question that can be raised is the one of the rationalizability of the evo-
lutionary process by a fitness ordering defined on the set of types. In informal
terms, the intuition behind the rationalizability of an evolutionary process by
means of a fitness ordering consists of the simple idea that "only the most
fit types survived to the evolutionary process". To define the rationalizability
property, let us first define what we mean by a fitness ordering.

Definition 2 A fitness ordering F on a set of types N ∈ Ω is a binary relation
that is reflexive, transitive and complete.

For any two types x, y ∈ N , the relation xFy states that "type x is at least
as fit as type y". Given the fitness ordering F and a set of types N , we can
define the maximal set M (F,N), which includes all elements of N that are not
dominated, in terms of fitness, by other elements of N .

Definition 3 The maximal set M (F,N) = {x ∈ N : ∀y ∈ N, xFy}

Having defined the fitness ordering and the maximal set, we can clarify what
we mean by an evolutionary process that is rationalizable by a fitness ordering.

6The elements of P can consist of various things, depending on the context. In an economic
context, P can be regarded as a set of individual characteristics of agents (e.g. preferences,
productivities, etc.). In a biological context, P can be regarded as a set of different species.

7See Austen-Smith and Banks (1998) and Nitzan (2010).
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Definition 4 An evolutionary process S(·) is rationalizable (RAT) by a fitness
ordering if and only if there exists a fitness ordering F such that, for any N ⊆ Ω,
S(N) = M(F,N).

The RAT property states that there is an identity between, on the one hand,
the set of surviving types from N , and, on the other hand, the set of the "most
fit" types within N on the basis of the fitness ordering F defined on N . If, for
instance, a type x survives across epochs, whereas other types y and z do not
survive, the RAT property states that type x is undominated by types y and z
in terms of fitness. Moreover, if type x is undominated in terms of fitness by
types y and z, then it must also be the case that type x survives.
Rationalizability captures the intuition according to which "only the most

fit types survive". That intuition is appealing to economists. According to the
RAT property, the survival or extinction of a type would reveal the existence
of a fitness ordering between types, exactly as individual choice processes can
reveal the existence of a preference ordering in microeconomic theory.
Besides the RAT property, other properties can also be expected from evo-

lutionary processes. In particular, biologists have, since the early stages of the
discipline, emphasized that the set of types or traits that survive or become ex-
tinct over time is likely to vary with the presence or the absence of other types
or traits in the population. That property can be called interactivity.

Definition 5 An evolutionary process S(·) is interactive (I) if and only if there
exists x ∈ N ⊆ P such that S(N)∩N\{x} 6= ∅ and S(N\{x}) 6= S(N)∩N\{x}.

Interactivity states that, within the set of surviving types, there exists a type
that would not have survived in the hypothetical case where another type had
been absent, or, alternatively, there exists, in the set of non-surviving types, a
type that would have survived if another type had been absent.
The plausibility of the interactivity property is related to likelihood of in-

teractions between different types. Those interactions can be of various kinds,
since these can favour or disfavor the survival of other types. Negative interac-
tions occur when the withdrawal of some type allows the survival of other types
that would have otherwise not survived. Take the example of three species
{x, y, z} sharing the same piece of land. Suppose that only the predator species
x survives, so that S({x, y, z}) = {x}. Let us now suppose that species x is
withdrawn from the piece of land. If species y and/or z survive in that new
context, we have that S({y, z}) 6= S({x, y, z}) ∩ {y, z}, which is an occurrence
of interactivity due to negative interactions. But interactivity can also be caused
by positive interactions among types. In that case, the withdrawal of some type
from the population leads to the extinction of other types that would have
otherwise survived thanks to positive interactions.

3 An impossibility result

Rationalizability (RAT) and interactivity (I) seem, at first sight, to be quite
plausible properties of evolutionary processes. It makes sense to assume that
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the surviving types are the "most fit" types, i.e. the undominated types in
terms of fitness. It is also reasonable to suppose that an evolutionary process is
not independent from the composition of the population in terms of types, but,
rather, exhibits interactivity.
However, as shown in this section, properties RAT and I are logically in-

compatible. To show that incompatibility, we need first to prove the following
lemma. That lemma is imported from the theory of rationalizable choices (see
Austen-Smith and Banks 1998, Nitzan 2010), since rationalizing an evolutionary
process by means of a fitness ordering on types is formally similar to rational-
izing a choice by means of a preference ordering on alternatives. It states two
conditions that are necessary and suffi cient for an evolutionary process to be
rationalizable by a fitness ordering. Those conditions are named Properties α
and β, exactly as these are referred to in the theory of rationalizable choices.

Lemma 1 An evolutionary process S(·) is rationalizable if and only if it satisfies
Properties α and β, defined as follows:

- Property α: ∀ O,N ⊆ Ω, O ⊆ N =⇒ S(N) ∩O ⊆ S(O).
- Property β: ∀ O,N ⊆ Ω, O ⊆ N , S(O) ∩ S(N) 6= ∅ =⇒ S(O) ⊆ S(N).

Proof. See Nitzan (2010), Theorem 3.2.
Property α states that the withdrawal of some types cannot prevent the

survival of the types that would have survived from the initial set. Thus the
evolutionary process must be consistent in contraction, since contracting the
set of types cannot prevent those who survived initially from surviving in the
contracted set. Property β states that expanding the set of types must not
prevent the types that survived initially from surviving under the expanded set
of types. Thus an evolutionary process must be consistent in expansion.
Thanks to Lemma 1, it can be shown that rationalizability and interactivity

are logically incompatible. No evolutionary process can satisfy both properties.
Moreover, any evolutionary process must satisfy either RAT or I.

Proposition 1 There exists no evolutionary process S(·) satisfying both RAT
and I. There exists no evolutionary process S(·) satisfying neither RAT nor I.

Proof. See the Appendix.
The intuition behind that result can be explained as follows. As stated

in Lemma 1, rationalizability implies Properties α and β, which can be inter-
preted as, respectively, a contraction-consistency property and an expansion-
consistency property. Interactivity must, by the variation of the set of surviv-
ing types due to a contraction of the set of types, violate either contraction-
consistency or expansion-consistency.
To see why interactivity is incompatible with Property α, take the following

example with P = {x, y, z}. Suppose that a type x survives only because another
type, let us say type y, is present. We have, for instance, S ({x, y, z}) = {x, y, z}
and S ({x, z}) = {z}. It is easy to see that S(·) does not satisfy Property α,
since S({x, y, z}) ∩ {x, z} * S({x, z}) = {z}, contrary to what Property α
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requires. As a consequence, there does not exist a fitness ordering rationalizing
the evolutionary process S (·).8
To illustrate the incompatibility of Property β with interactivity, take the

following example. Suppose that a type x does not survive because of the
presence of a predatory type y, but would have survived in the absence of y. We
have S ({x, y, z}) = {y, z} and S ({x, z}) = {x, z}. It is straightforward to see
that S(·) does not satisfy Property β. Indeed S({x, z})∩S({x, y, z}) = {z} 6= ∅
but S({x, z}) = {x, z} * S({x, y, z}) = {z}. Hence, here again, there does
not exist any fitness ordering F rationalizing S(·).9 Therefore there exists no
evolutionary process that is both rationalizable and interactive.
Those examples can also be used to explain the second part of Proposition

1, that is, any evolutionary process must be either rationalizable or interactive.
To see why any violation of Property α or β implies interactivity, let us consider
the example with P = {x, y, z}, with S ({x, y, z}) = {y, z}. A violation of, for
instance, Property α, must be an occurrence of interactivity. The reason is that
a violation of Property α is a lack of contraction-consistency. In our example,
it occurs when either S({y, z} = {y} or {z}, so that S({x, y, z}) ∩ {y, z} *
S({y, z}). But that situation implies S({y, z}) 6= S({x, y, z}) ∩ {y, z}, that is,
interactivity. Similarly, a violation of Property β is equivalent to expansion-
inconsistency, and implies also interactivity.
Therefore an obvious corollary of Proposition 1 is that any evolutionary

process must satisfy one and only one property: either rationalizability or in-
teractivity. Whether an evolutionary process satisfies rationalizability or inter-
activity depends on its precise form. However, when the set of types is a pair,
we know that the RAT property is necessarily satisfied.

Lemma 2 Take a pair of types P = {x, y}. Then any evolutionary process
S(P ) satisfies RAT and violates I.

Proof. See the Appendix.
As a consequence, studying whether evolutionary processes satisfy rational-

izability or interactivity is only relevant for sets of types P with |P | > 2.
Finally, to better illustrate the incompatibility between rationalizability and

interactivity in the general case where |P | > 2, it may be worth introducing the
following property, which is equivalent to Properties α and β. That property
can be called the Weak Axiom of Revealed Fitness, as it is the equivalent, in our
context, of the Weak Axiom of Revealed Preferences (WARP) in consumption
theory (see Samuelson 1938, 1948).

Definition 6 An evolutionary process S (·) satisfies the Weak Axiom of Re-
vealed Fitness (WARF) if and only if, ∀ O,N ⊆ Ω, x ∈ S(N), y ∈ N\S(N)
and y ∈ S(O) =⇒ x /∈ O.

8 Indeed, if such a fitness ordering F existed, we would have, from S ({x, y, z}) = {x, y, z},
that type x is undominated by type z in fitness terms: xFz. But from S({x, z}) = {z}, we
have that type x is dominated by type z in fitness terms, so that ¬ xFz. It is thus impossible
to find a fitness ordering F such that xFz and ¬ xFz.

9 Indeed, from S ({x, y, z}) = {y, z}, we have ¬ xFz, but from S ({x, z}) = {x, z}, we have
xFz, which contradicts ¬ xFz.
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The WARF states that, if type y does not survive from a set of types N ,
whereas another type x survives from N , then if type y survives from another
set of types O, it must be the case that type x does not belong to O.10

From the theory of rationalizable choices, we know that the WARP is equiv-
alent to Properties α and β.11 Hence, in our context, a rationalizable evolution-
ary process must satisfy the WARF property, and an interactive evolutionary
process must violate the WARF property. To see this, take the example of a
three-type population, with S ({x, y, z}) = {y, z} and S ({x, z}) = {x, z}. That
evolutionary process is interactive: type x does not survive in the presence of
type z when type y is there, but survives in the presence of type z when type y is
absent. That evolutionary process also violates WARF: S ({x, y, z}) = {y, z} re-
veals that type z dominates, in fitness terms, type x, whereas S ({x, z}) = {x, z}
reveals that type x is not dominated, in fitness terms, by type z. Thus no fitness
ordering can be revealed from S ({x, y, z}) = {y, z} and S ({x, z}) = {x, z}.

4 Evolutionary OLG models

Section 3 showed that an evolutionary process must be either rationalizable by
a fitness ordering or interactive, but cannot satisfy both properties. The logical
impossibility to have an interactive rationalizable evolutionary process raises
the question of the property satisfied by existing evolutionary OLG models.
To answer that question, this section reviews some canonical evolutionary

OLG models. In order to study the rationalizability or interactivity of the
associated evolutionary processes, we proceed in two stages. First, we focus on
models of (effortless) hereditary transmission, in which types are transmitted
through biological reproduction. For that purpose, we pay a particular attention
to the evolutionary models developed by Galor and Moav in the context of
unified growth theory (see Galor and Moav, 2002, 2005). Then, in a second
stage, we study models of cultural transmission through (costly) socialization.
That second stage is carried out by focusing on models of socialization and
cultural transmission by Bisin and Verdier (2000, 2001, 2011).
In order to examine the evolutionary process at work in those frameworks,

we must, given Lemma 2, consider versions of those models where the set of
types P has a cardinality strictly larger than 2. Throughout this section, we
will examine n-types versions of evolutionary OLG models, in order to keep
the analysis as general as possible. Focusing on n-types models allows us to be
certain that rationalizability, if it holds, is not due to a low postulated number
of types, but is a general property of the evolutionary process under study.

10 It is easy to see that, if one focuses on evolutionary processes involving only two types,
the WARF property is necessarily satisfied.
11On that equivalence, see Nitzan (2010).
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4.1 Models of effortless transmission: Galor Moav (2002)

Galor and Moav’s (2002) 2-period OLG model provides the foundations of an
evolutionary growth theory, since this shows that the take-off from a period of
stagnation to sustained growth can be explained by the evolutionary advantage
associated to human traits that are complementary to the growth process.
That model is not the only one linking economic growth with the dynamics

of heterogeneity. More recently, Galor and Moav (2005) developed another 2-
period OLG model with intracohort heterogeneity, whose goal is to explain the
demographic transition.12 In both models, the stylized fact under study - i.e.
economic or demographic transition - is explained by means of a shift of evo-
lutionary advantage, from "low quality" agents towards "high quality" agents.
The main difference between those models lies in how "quality" is modeled. In
Galor Moav (2002), "quality" is the level of children’s education, whereas, in
Galor Moav (2005), "quality" is the level of a genetically predetermined somatic
investment, which coincides both with the unitary child cost and with the de-
gree of child’s robustness when facing epidemics. Those two models being close
to each other, we focus here only on Galor Moav (2002).
The adult population at time t, denoted by Lt, is divided into n types

of agents i ∈ {1, 2, ..., n}, who differ in their preferences with respect to the
"quality" or the education of their children. The intensity of parental taste for
children’s education is denoted by the parameter βi:

β1 > β2 > ... > βn (1)

As we will see below, the preference parameter βi is a key determinant of how
agents solve the trade-off between the quantity and the quality of their children.
The adult population Lt includes Lit agents of type i ∈ {1, 2, ..., n}:

Lt =

n∑
i=1

Lit = Lt

n∑
i=1

qit (2)

where qit ≡ Lit/Lt is the share of type i ∈ {1, 2, ..., n} in the adult population.
We obviously have:

∑n
i=1 q

i
t = 1.

4.1.1 Microfoundations

A single good is produced at every period by means of the technology:

Yt = H1−α
t (AtX)

α (3)

where Yt is total output, Ht is aggregate quantity of effi ciency units of labour,
X is the (fixed) land, and At is the level of technology.
The supply of labour depends on agents’decisions on the number of children

and on the time investment in the education or "quality" of each child. An

12The demographic transition is defined as the shift from a demographic equilibrium with
high fertility and high mortality to an equilibrium with low fertility and low mortality.
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agent of type i ∈ {1, 2, ..., n} of generation t is endowed with hit effi ciency units
of labour at time t. The aggregate supply of effi ciency units Ht is:

Ht = L1
tf

1
t h

1
t + L2

tf
2
t h

2
t + ...+ Lnt f

n
t h

n
t (4)

where f it is the fraction of time devoted to labour by an agent of type i.
In the absence of property rights, the return to land is zero, and the wage per

effi ciency unit of labour wt is equal to the output per effi ciency unit of labour:

wt = xαt (5)

where xt = AtX/Ht denotes effective resources per effi ciency unit of labour.
The preferences of a young adult agent of type i ∈ {1, 2, ..., n} are represented

by a log-linear utility function as follows:

uit = (1− γ)ln(cit) + γ
[
ln(nit) + βiln(hit+1)

]
(6)

where uit is the utility of the agent, γ is a time preference parameter (0 < γ < 1),
cit is the consumption, n

i
t is the number of children, while h

i
t+1 is the human

capital of the child, all expressed for an agent of type i at time t. The parameter
βi reflects parental taste for children’s education (0 < βi ≤ 1). This is the source
of intracohort heterogeneity in our economy.
The transmission of the preference parameter βi across generations takes

place through biological reproduction: preferences are hereditary, and are trans-
mitted from generations to generations within a dynasty.
The human capital stock of children hit+1 depends on the parental time

investment in education eit+1 and on some rate of technological progress gt+1 =
At+1−At

At
, by means of the following function:

hit+1 = h(eit+1, gt+1) (7)

which is increasing concave in eit+1 and decreasing convex in gt+1, while the
cross derivative is strictly positive.13

The endowment of parental time, valued as wthit in terms of consumption,
can be spent either on consumption cit, or on producing children. Each child has
a fixed time cost τ , which is assumed to be suffi ciently small so as to allow for
a positive population growth (τ < γ), as well as a cost in terms of education,
eit+1. Hence the budget constraint of an agent of type i is:

cit ≤ wthit
(
1− τnit − eit+1n

i
t

)
(8)

Parents of type i ∈ {1, 2, ..., n} choose the number of children nit and time
education investment eit+1 in such a way as to maximize their lifetime welfare:

max
nit,e

i
t+1

(1− γ)ln(wth
i
t

(
1− τnit − eit+1n

i
t

)
) + γ

[
ln(nit) + βiln(h(eit+1, gt+1))

]
s.t. wthit

(
1− τnit − eit+1n

i
t

)
≥ c̃

s.t.
(
nit, e

i
t+1

)
≥ 0

13The intuition is that the time required for learning a new technology diminishes with the
level of education and increases with the rate of technological progress.
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where c̃ is the subsistence consumption necessary for having children.
The optimal number of children for an adult of type i ∈ {1, 2, ..., n} satisfies:

nit(τ + eit+1) = γ if xαt h
i
t ≥ c̃/(1− γ)

nit(τ + eit+1) = 1− c̃/xαt hit if xαt h
i
t ≤ c̃/(1− γ)

nit = 0 if xαt h
i
t ≤ c̃ (9)

Three distinct cases can arise. If the potential income xαt h
i
t is lower than the

threshold c̃, agents of type i have no children at all. If the potential income xαt h
i
t

is higher than c̃ but below c̃/(1− γ), agents of type i choose a strictly positive
number of children, which is increasing in the parental potential income. In that
case, the fraction of time devoted for child rearing is below γ, and is increasing
in the potential income. If the potential income xαt h

i
t is higher than c̃/(1− γ),

the fraction of time devoted for child rearing is equal to γ, and is invariant to
the level of the parental potential income, ceteris paribus.
Regarding the optimal education investment, we have:

βihe
(
eit+1, gt+1

)
−
h
(
eit+1, gt+1

)(
τ + eit+1

) = 0 if eit+1 > 0

≤ 0 if eit+1 = 0 (10)

It is only under a suffi ciently high level of βi that there is an interior optimum
level of eit+1; otherwise, for low levels of βi, parents choose zero education:
eit+1 = 0.14 Galor and Moav show that eit+1 is increasing in gt+1 and in β

i.
On the contrary, technological progress decreases the number of children of an
individual of type i, by raising the investment in the "quality" of children eit+1.

Hence, agents can belong to one of the following three groups. First, agents
with potential incomes lower than the subsistence threshold (i.e. xαt h

i
t ≤ c̃) have

no children at all, and thus do not invest in education (nit = eit+1 = 0). Agents
of that type become extinct, due to the absence of descendants. Second, agents
with potential incomes c̃ ≤ xαt hit ≤ c̃/(1− γ) have a strictly positive number of
children, but do not necessarily invest in their children’s education, depending
on how large their taste for children’s education βi is (nit > 0, eit+1 ≥ 0). The
fraction of time dedicated to rearing children is, for those agents, increasing with
the potential income. Hence, among agents of that group for which eit+1 = 0,
those who enjoy a higher potential income have also more children. Third,
agents with a potential income larger than c̃/(1 − γ) have a strictly positive
number of children. Here again, whether those agents spend on education or
not depends on how large βi is. In that case, we thus have also nit > 0, eit+1 ≥ 0.
However, a major difference with respect to the second group lies in that fact
that those agents spend a fraction γ of their time on child rearing, which is
invariant to the level of parental potential income.

14To guarantee that at least some individuals will invest in education, it is assumed, fol-
lowing Galor and Moav, that, for individuals with the highest valuation of quality (i.e. β1),
there is a positive investment in the quality of children.
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At any point in time, whether an individual has some children or not depends
on the level of his potential income xαt h

i
t, and, thus, depends not only on the level

of his human capital hit, but, also, on how large the level of technology At and the
surface of land X are in comparison to the aggregate supply of effi ciency units
of labor Ht. If Ht is low in comparison to the level of technology and the surface
of land, then all individuals have potential incomes that exceed the threshold
c̃, and, hence, have some children. However, if Ht is high in comparison to the
level of technology and the surface of land, then individuals with low human
capital have a potential income smaller than c̃, and, thus, cannot have children.
Therefore, when the aggregate supply of effi ciency units of labor Ht is high

in comparison to the level of technology and the surface of land, the economy
is characterized by a "struggle for life", in the sense that only the suffi ciently
gifted agents can have descendants, and thus only the most gifted dynasties, in
terms of human capital, can survive over time. The existence of such a struggle
for life constitutes, together with heterogeneity, the two necessary conditions for
the existence of natural selection mechanisms as described by Darwin (1859).
The next section examines the evolutionary process at work in that economy.

4.1.2 The evolutionary process

Let us now study the dynamics of heterogeneity. For that purpose, we assume,
without loss of generality, that, at the initial stage of development, type-specific
human capital levels satisfy:

h1
0 > h2

0 > ... > hn−1
0 > hn0 (11)

Thus higher quality types have also a higher initial human capital.
Within Galor and Moav’s model, whether one type of agents tends to be-

come, over time, more or less widespread than another type depends only on
fertility differentials across types.
To see this, note that the number of agents of type i ∈ {1, 2, ..., n} in a

cohort follows the law:
Lit+1 = nitL

i
t (12)

Hence, given that the total adult population can be written as: Lt+1 =
n1
tL

1
t + n2

tL
2
t + ...+ nnt L

n
t , we know that q

i
t follows the dynamic law:

qit+1 =
nit
nt
qit (13)

where nt ≡ n1tL
1
t+n2tL

2
t+...+nnt L

n
t

Lt
denotes the average fertility rate, while qit ≡

Lit/Lt is the share of type i ∈ {1, 2, ..., n} in the adult population.
Whether the fraction of the population having a particular type i rises or

falls over time depends only on whether the fertility rate associated with that
type is higher or lower than the average fertility rate:

qit+1 ≶ qit ⇐⇒ nit ≶ nt
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It is straightforward to see that, if some type i has a potential income lower
than c̃, then that type becomes extinct, since nit = 0 implies qit+1 = 0. Thus
extinction of a type occurs in Galor Moav (2002) when that type has too low
income potential. For higher income levels, the initial associated fertility rates
are positive, and whether one type will tend to expand or not in the population
depends on fertility differentials across types. As shown above, type-specific
fertility rates depend strongly on the chosen level of education. Parents with
a high βi choose a higher amount of education per child, and thus make fewer
children. On the contrary, agents with a lower βi choose a lower amount of
education per child, and invest more in the quantity of children.
In the light of those observations, we can distinguish between n distinct

cases regarding the evolution of the composition of the population over time,
depending on which type i ∈ {1, ..., n} is the "marginal" one, i.e. the lowest
"quality" type that does not become extinct initially. For each of those cases,
we need to distinguish between: (1) the composition of the population after a
finite number of periods; (2) the composition of the population after an infinite
number of periods.15 For the sake of presentation, we will present all those cases
by referring to a Case j, where type j ∈ {1, 2, ..., n} is the marginal type.
Suppose that the initial potential incomes xα0h

i
0 of all types i with i > j are so

low that ni0 = 0. As a result of poverty and stagnation, types {j + 1, j + 2, ..., n}
become extinct. The only surviving types are types {1, 2, ..., j}, who tend to
favor the "quality" of children over the "quantity" of children. Hence, they
exhibit low fertility and high investment in education. However, among those
surviving "quality" types, one type, type j, has a larger fertility than other
types, because of a lower concern for education (i.e. a lower βi). As a conse-
quence, we have: njt > ... > n1

t and type j, the most "quantity" type of the
"quality" types, has the evolutionary advantage over other surviving "quality"
types. Hence we have:

S ({1, 2, ..., n}) = {1, 2, ..., j} (finite horizon)
S ({1, 2, ..., n}) = {j} (infinite horizon)

The dynamics of heterogeneity must belong to one of those n cases, depend-
ing on the type j ∈ {1, 2, ..., n} with the lowest potential income that can escape
from initial extinction. That "marginal" type will turn out, in the future, to
dominate the other types, because of its larger fertility. That dominance will
be compatible with the survival of other types under a finite time horizon, but
consists of a full generalization of the population under an infinite time horizon.
In the light of that result, we can now investigate whether the evolutionary

process at work in Galor and Moav’s framework satisfies rationalizability (RAT)
or interactivity (I). The following proposition summarizes our results.

15The reason is that, if we have nit > njt > 0, type i has an evolutionary advantage over
type j, but the latter type will not be extinct after a finite number of time periods (since
njt > 0). However, from an asymptotic point of view, the inequality nit > njt implies that type
j tends to be extinct when t→∞.
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Proposition 2 Consider the model of Galor and Moav (2002) with P = {1, 2, ..., n},
after a finite or an infinite number of time periods.

• if (A0X/H0)
α
hi0 ≥ c̃ for all i ∈ {1, 2, ..., n}, then the evolutionary process

satisfies RAT and not I;

• if (A0X/H0)
α
hi0 ≥ c̃ for all i ∈ {1, 2, ..., j} and if (A0X/H0)

α
hi0 < c̃

for all i ∈ {j + 1, j + 2, ..., n}, then the evolutionary process satisfies RAT
and not I; except if (A0X/H0)

α
hj+1

0 ≥ c̃ in the absence of some type i
∈ {1, 2, ..., n}, in which case it satisfies I and not RAT.

Proof. See the Appendix.
Whether the evolutionary process satisfies the rationalizability or interac-

tivity depends on initial conditions
{
A0, H0, h

i
0

}
and on structural parameters

{X,α, c̃}. When there is a large amount of land (i.e. high X), a quite produc-
tive labour (i.e. a high α) and a low subsistence consumption c̃, all types will,
for a large interval of values for initial conditions

{
A0, H0, h

i
0

}
, survive in the

long-run, and the evolutionary process satisfies rationalizability. However, when
the conditions are less favorable, so that at least one type becomes extinct, the
evolutionary process may exhibit interactivity. Violations of the RAT property
occur when the withdrawal of a type from the population allows the survival of
(at least) one other type that would not have survived otherwise. Such a situa-
tion is possible, since the withdrawal of a type reduces H0, and, thus, raises the
potential parental income xα0h

i
0 of agents of other types.

In sum, when the living conditions are favorable (i.e. high X, high α and
low c̃) and / or when initial conditions are suffi ciently good (i.e. high values for
A0, H0, hi0), the evolutionary process satisfies rationalizability. However, when
living conditions are harsher, interactivity may arise. Those results are robust
to whether we consider a finite or an infinite time horizon.

4.2 Models of costly transmission: Bisin Verdier (2001)

Following the pioneer works of Cavalli-Sforza and Feldman (1981) and Boyd and
Richerson (1985) applying models of evolutionary biology to the transmission of
cultural types, Bisin and Verdier (2000, 2001) developed microeconomic models
of socialization choices. In those models, parental socialization efforts determine
the probability that children adopt the type of parents, and, indirectly, the
dynamics of the transmission of traits over time.16

Bisin and Verdier (2001) consider a 2-period OLG model, where each parent
has one child. Children are born without any type, and they acquire their type
before becoming an adult, in the way that will be specified below. The adult
population is divided in several types. We will focus here on a n-type economy:
P = {1, 2, ..., n}. As usual, qit denotes the proportion of the population with
type i ∈ {1, ..., n} in the adult population at t.
16Those socialization models have become increasingly used, to explain phenomena such as

the dynamics of religions and marriage (Bisin et al 2004), globalization and trade (Olivier et
al 2008), or the dynamics of life expectancy (Ponthiere 2010). See Bisin and Verdier (2011).
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As this is usually assumed in that literature (see Bisin et al 2009 and Mont-
gomery 2010), we assume that the n different types differ regarding their degree
of cultural intolerance, that is, regarding the extent to which they value the fact
of having a child with their own trait. For simplicity, that degree of intolerance
is assumed to be symmetric for any given type i, that is, the utility gain for a
parent of type i from having a child of the same type i rather than a child of
type j is the same as the utility gain for a parent of type i from having a child
of type i rather than a child of type k. Denoting by ∆V i the utility gain of a
parent of type i having a child of type i rather than of another type, we can
rank the n types on the basis of their degree of intolerance as follows:

∆V 1 > ∆V 2 > ∆V 3 > ... > ∆V n (14)

Thus heterogeneity lies here on the side of socialization gains. One could, alter-
natively, have heterogeneity in the costs of socialization.

4.2.1 Microfoundations

Cultural transmission can be either the result of direct vertical (parental) so-
cialization, or the result of horizontal / oblique socialization:

• direct vertical socialization to the parent trait i ∈ {1, 2, ..., n} occurs with
a probability dit;

• if the child born in a family of type i ∈ {1, 2, ..., n} is not directly socialized,
which happens with a probability 1 − dit, the child will be socialized by
picking up the trait of a role model chosen randomly in the population.17

Hence, the probability that a child born in a family of type i ∈ {1, 2, ..., n}
takes the types i and j, with i 6= j, are given respectively by:

P iit+1 = dit + (1− dit)qit (15)

P ijt+1 = (1− dit)q
j
t (16)

The probabilities of direct socialization dit are determined by parental so-
cialization decisions. Parents have imperfect empathy: they care about their
children, but only through their own preferences (and not the ones of their chil-
dren). Let us denote by V ij the utility to a type-i parent of a type-j child.
We assume that V ii and V ij take constant values, and that V ii > V ij , so that
parents have an incentive to socialize their children to their type.
The socialization takes place through a parental socialization effort, denoted

by τ it ∈ [0, 1].18 That socialization effort has a welfare cost, which is usually
assumed to be quadratic in the effort level:

C(τ it) =
(τ it)

2

2
(17)

17The child takes the trait i with a probability qit and the trait j 6= i with a probability qjt .
18One can, alternatively, make the probability of direct vertical socialization depend on a

segregation effort, whose goal is to minimize the influence of external sources on the child.

15



Bisin and Verdier consider a wide set of socialization mechanisms, which
relate the probability of direct vertical socialization dit to the parental social-
ization effort τ it. One well-know socialization mechanism is entitled "It’s the
family". Under that mechanism, the probability of direct vertical socialization
to trait i is merely dependent on the parental socialization effort, as follows:

dit = τ it (18)

Hence the probabilities of keeping the parental type i ∈ {1, 2, ..., n} or adopt-
ing another type j 6= i are:

P iit+1 = τ it + (1− τ it)qit (19)

P ijt+1 = (1− τ it)q
j
t (20)

Let us now consider the parental socialization decision. The socialization
choice for a parent of type i ∈ {1, 2, ..., n} can be written as:

max
τ it∈[0,1]

− C(τ it) + P iit+1V
ii +

∑
j 6=i

P ijt+1V
ij

s.t. P iit+1 = τ it + (1− τ it)qit
s.t. P ijt+1 = (1− τ it)q

j
t

The first-order condition can be rewritten as:

τ it =
(
V ii − V ij

)∑
j 6=i

qjt > 0 (21)

V ii − V ij ≡ ∆V ij > 0 is the relative value of child with the same type as the
parent of type i in comparison with that child taking trait j 6= i. Following Bisin
and Verdier (2011), we assume that the degrees of cultural intolerance ∆V ij are
symmetric, that is, ∆V ij = ∆V ik for all j 6= k. We will thus denote ∆V ij by
∆V i. That assumption is known as the "symmetric intolerances" assumption.
The parental socialization effort is decreasing in the fraction of the pop-

ulation sharing the parent’s type, qit.
19 This phenomenon is called "cultural

substitution": the larger the proportion of the population sharing the parental
type, the lower is the socialization effort chosen by those parents, since they can
rely on the society as a whole for the socialization of their child to their type.

4.2.2 The evolutionary process

The adult population with the type i at time t+ 1, denoted by qit+1, is:

qit+1 = qit
[
dit + (1− dit)qit

]
+
∑
j 6=i

qjt

[
(1− djt )(qit)

]
(22)

19 Indeed qit = 1−
∑
j 6=i q

j
t .
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The first term is the number of children born in a family of type i and who
kept the type of their parent, whereas the second term is the number of children
born in a family of type j 6= i and who took the type i.
Substituting for τ it = (1− qit)∆V i and τ

j
t = (1− qjt )∆V j , we get:

qit+1 = qit + qit

∑
j 6=i

qjt (1− qit)∆V i −
∑
j 6=i

qjt (1− q
j
t )∆V

j

 (23)

Hence, in the presence of n types, the dynamics of population is summarized
by an n-dimensional dynamic system. As all qit sum up to 1, that system can
be reduced to an (n− 1)-dimensional dynamic system. Obviously, the study of
the dynamics of heterogeneity within such a framework is far from trivial. That
study has been recently carried out by Bisin et al (2009), but in a continuous
time setting. Given that the precise purpose of the present paper lies in the
study of rationalizability, we will, throughout the rest of this section, shift to
a continuous time model, and use Bisin et al (2009)’s findings to explore the
properties of the associated evolutionary process.20

In a continuous time setting, the proportion of the adult population with
type i follows the dynamic law:

q̇i = qi

(1− qi)∆V i −
∑
j 6=i

qj(1− qj)∆V j
 (24)

That expression is supposed to hold for all i ∈ {1, 2, ..., n}.
Bisin et al (2009) study the dynamics of heterogeneity in that economy.

They particularly focus on the existence, uniqueness and stability of a stationary
distribution of the population across the n possible types, that is, a distribution
that can replicate itself over time. Their main results are the following:21

• Any degenerate distribution (i.e. where qi = 1 for some type j and qi = 0
for types i 6= j) is a locally unstable stationary distribution.

• A stationary distribution with k surviving types, denoted by F k, exists if
and only if, for any type i ∈ F k, we have:

∆V i > (k − 1)Gk

where 1
Gk =

∑
j∈Fk

1
∆V j .

• The stationary distribution is defined by:

qi = 1− (k − 1)

∆V i
Gk

for i ∈ F k and qj = 0 for j /∈ F k.
20Note that the focus on the continuous time model involves some simplification, since the

equivalent discrete time model may exhibit a significantly more complex dynamics.
21See Bisin et al (2009), propositions 1 to 4.
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• There exists a type k∗ ≥ 2 such that a unique stationary distribution F k
∗

exists. That stationary distribution is locally stable.

• F k∗ contains the types with the highest degree of cultural intolerance,
that is, all traits i such that i ≥ k∗.

• There exist no stationary distribution F k with k > k∗.

• Stationary distributions F k with k < k∗ are locally unstable.

• If
∑
j∈ {1,...,n}

1
∆V j >

n−1
mini∈ {1,...,n}∆V i , then there exists a unique interior

locally stable stationary distribution, with, for all i ∈ {1, 2, ..., n}:

qi = 1− (n− 1)

∆V i

 ∑
j∈ {1,...,n}

1

∆V j

−1

This is the special case where the margin type k∗ coincides with the least
intolerable type, i.e. type n.

Those results can be summarized as follows. Take the general case where the
initial composition of the population is not a stationary distribution of types.
Then, two cases can arise. First, if

∑
i∈ {1,...,n}

1
∆V i > n−1

mini∈ {1,...,n}∆V i , all

types {1, ..., n} survive in the long-run. Second, if
∑
i∈ {1,...n}

1
∆V i ≤ n−1

mini∈ {1,...,n}∆V i ,

only a subset of types, denoted by {1, ..., k∗} survives in the long-run, whereas
types {k∗ + 1, ..., n} become extinct. In that second case, agents with a degree
of cultural intolerance higher or equal to ∆V k

∗
will survive in the long-run,

whereas types with a low degree of intolerance will become extinct.
Therefore, and focusing on the general case where the initial distribution is

not a stationary distribution, we have either:

S({1, 2, ..., n}) = {1, 2, ..., n}

or
S({1, 2, ..., n}) = {1, ..., k∗}

We are now able to discuss whether the evolutionary process satisfies ratio-
nalizability or interactivity.

Proposition 3 Consider the model of Bisin and Verdier (2001) with P =
{1, ..., n} under the "It’s the family" socialization mechanism.

• If
∑

i∈{1,...,n}

1
∆V i > n−1

min
i∈{1,...,n}

∆V i , then the evolutionary process satisfies

RAT and not I;

• If
∑

i∈{1,...,n}

1
∆V i ≤ n−1

min
i∈{1,...,n}

∆V i , then the evolutionary process satisfies I

and not RAT.
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Proof. See the Appendix.
The first case is the situation where the stationary distribution is an inte-

rior distribution, that is, a situation where all types survive. In that case, any
contraction of the set of types will preserve the initial set of survivors, so that
the evolutionary process is rationalizable by a fitness ordering. However, in the
second case, where only a subset of types survives, the evolutionary process is
not rationalizable. As shown in the Appendix, the reason why the evolutionary
process present in Bisin Verdier does not satisfy rationalizability lies in a vio-
lation of Property β. As we show, the withdrawal of some initially surviving
type can make an initially non-surviving type survive, against Property β. It
follows from this that, in the case where some types do not initially survive, the
evolutionary process is interactive.
In sum, the evolutionary process present in the Bisin Verdier model, which

relies on a microfounded socialization mechanism, exhibits rationalizability by
a fitness ordering or interactivity, depending on whether the equilibrium sta-
tionary distribution of types is interior or not. The interiority of the stationary
distribution of types depends on the shape of the distribution of cultural intol-
erance in the population. A central aspect of that distribution is the extent to
which the least intolerant type is quite intolerant or not, i.e. whether min ∆V i

is more or less large. When the least intolerant type exhibits a high degree of
intolerance, the stationary distribution of types is an interior equilibrium. In
that case, Property β is necessarily satisfied, as there could hardly be a "new"
surviving type when some other type is withdrawn from the population. Hence
the evolutionary process is rationalizable. However, when the least intolerant
type exhibits a low degree of cultural intolerance, the stationary distribution of
types is not an interior equilibrium, as some types become extinct. In that case,
Property β is not satisfied, and the evolutionary process is not rationalizable by
a fitness ordering.

5 Conclusions

Evolutionary OLG models have become widespread in growth theory, since these
allow for a modelling of the dynamics of heterogeneity, which has been shown
to be crucial for the understanding various phenomena, such as the birth of
economic growth (Galor and Moav 2002), the demographic transition (Galor
and Moav 2005), and the dynamics of religions and marriage (Bisin et al 2004).
The goal of this paper was to propose a framework to study the properties of

the evolutionary processes at work in those models. In particular, we focused on
the properties of those evolutionary processes in terms of survival and extinction
of types or traits in the long-run.
For that purpose, we first introduced, within a general finite-population

model, two properties of an evolutionary process. On the one hand, the ratio-
nalization by a fitness ordering, in the sense that the selection must have been
such that "only the most fit ones have survived". On the other hand, the inter-
activity of the evolutionary process, in the sense that the set of selected types
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is sensitive to the presence of some other types. Those two formal properties
were shown to be logically incompatible.
Then, in a second stage, we considered n-types versions of several canonical

evolutionary OLG models, such as the models of hereditary transmission by
Galor and Moav (2002), and the models of socialization by Bisin and Verdier
(2001). We showed that, while the evolutionary process at work in Galor-Moav
is generally rationalizable by a fitness ordering, the opposite is true for the
evolutionary process in Bisin-Verdier, which exhibits, in general, interactivity.
In sum, the two general properties of evolutionary processes introduced in

this paper (rationalizability by a fitness ordering and interactivity) allow us to
clearly distinguish between evolutionary OLG models that could, at first glance,
be regarded as very close. Distinguishing between, on the one hand, rational-
izable evolutionary processes, and, on the other hand, interactive evolutionary
processes, matters for the study of heterogeneity, since these two kinds of evolu-
tionary processes differ on a particular aspect that is most relevant for studying
situations where heterogeneity is important: the capacity of the initial struc-
ture of heterogeneity to affect, under the prevailing evolutionary process, the
set of types that will survive in the long-run. Under rationalizable evolution-
ary processes, the initial structure of heterogeneity does not affect the set of
surviving types, whereas the opposite result holds under interactive processes,
where the set of surviving types is sensitive to the initial structure of heterogene-
ity. Therefore the partition between rationalizable and interactive evolutionary
processes casts some original light on the OLG literature aimed at describing
the dynamics of heterogeneity.
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7 Appendix

7.1 Proof of Proposition 1

Let us first show the logical incompatibility between RAT and I.
Suppose that S(·) satisfies I. Then, by definition, there exists x ∈ N ⊆ P

such that S(N) ∩ N\{x} 6= ∅ and S(N\{x}) 6= S(N) ∩ N\{x}. S(N\{x}) 6=
S(N)∩N\{x} implies either S(N\{x}) * S(N)∩N\{x} or S(N\{x}) + S(N)∩
N\{x} or both.
Let us first assume that S(N\{x}) + S(N) ∩ N\{x}. Denoting N\{x} by

O, this is equivalent to S(O) + S(N) ∩ O, in contradiction with Property α.
This implies, given Lemma 1, that RAT is violated. Let us now assume that
S(N\{x}) * S(N) ∩ N\{x}. Denoting N\{x} by O, we have O ⊆ N and
S(O) * S(N) ∩ O. This clearly violates S(O) ⊆ S(N), in contradiction with
Property β. This implies, given Lemma 1, that RAT is violated.
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Let us now show that any evolutionary process must satisfy either RAT
or I. That result can be proved by reductio ad absurdum. Let us suppose the
existence of an evolutionary process S(·) that satisfies neither RAT nor I. The
non-satisfaction of RAT implies, by Lemma 1, that Property α and/or Property
β is violated.
Assume first that Property α is violated and Property β is satisfied. This

implies that ∃ O,N ⊆ Ω, with O ⊆ N , and such that S(N) ∩ O * S(O).
Therefore the withdrawal of some type from N prevents the survival of at least
one type that used to survive from N . Let us denote the withdrawn type as x.
We have thus: N\{x} ⊆ N and S(N)∩N\{x} * S(N\{x}), which implies that
S(N\{x}) 6= S(N) ∩ N\{x}. Hence Property I is necessarily satisfied. Thus
a contradiction is reached. An evolutionary process that violates Property α
must satisfy I, and thus cannot violate both RAT and I.
Assume now that Property β is violated and Property α is satisfied. This

implies that ∃ O,N ⊆ Ω, with O ⊆ N , and such that S(O) ∩ S(N) 6= ∅ and
S(O) * S(N). In other words, the addition of some type, let us say y, to
the initial set of types, let us say set O, prevents the survival of some initially
surviving type. We have thus: O ⊆ O ∪ {y} and S(O ∪ {y})∩O * S(O), which
implies that S(O) 6= S(O ∪ {y}) ∩ O. Hence Property I is necessarily satisfied.
Thus a contradiction is reached. An evolutionary process that violates Property
β must satisfy I, and thus cannot violate both RAT and I.
Finally, when an evolutionary process violates both Properties α and β,

the two previous arguments hold, and the evolutionary process must satisfy I.
Hence it is impossible to violate both RAT and I. One - and only one - of those
properties must be satisfied.

7.2 Proof of Lemma 2

Take P = {a, b}. From the non-emptiness of the set of surviving types, we know
that S ({a, b}) = {a} or {b} or {a, b}, and that S ({a}) = {a} and S ({b}) = {b}.
Let us show that Property α is always valid. Property α requires: O,N ⊆ Ω,

O ⊆ N =⇒ S(N)∩O ⊆ S(O). Take the case where S ({a, b}) = {a}. We have
{a} ⊆ {a, b} and S({a, b}) ∩ {a} = {a} ⊆ S({a}) = {a}, in conformity with
Property α. We have also {b} ⊆ {a, b} and S({a, b})∩{b} = ∅ ⊆ S({b}) = {b},
in conformity with Property α. The same rationale holds when S ({a, b}) =
{b}. Take now the case where S ({a, b}) = {a, b}. We have {a} ⊆ {a, b} and
S({a, b})∩{a} = {a} ⊆ S({a}) = {a}, in conformity with Property α. We have
also {b} ⊆ {a, b} and S({a, b}) ∩ {b} = {b} ⊆ S({b}) = {b}. Hence Property α
is satisfied.
Let us now show that Property β is also valid. Property β requires: O,N ⊆

Ω, O ⊆ N and S(O) ∩ S(N) 6= ∅ =⇒ S(O) ⊆ S(N). Take the case where
S ({a, b}) = {a}. We have {a} ⊆ {a, b} and S({a, b}) ∩ S({a}) = {a} 6= ∅
and S({a}) = {a} ⊆ S({a, b}) = {a}, in conformity with Property β. We have
also {b} ⊆ {a, b} and S({a, b}) ∩ S({b}) = ∅, so that Property β is satisfied.
The same rationale holds when S ({a, b}) = {b}. Take now the case where
S ({a, b}) = {a, b}. We have {a} ⊆ {a, b} and S({a, b})∩S({a}) = {a} 6= ∅ and
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S({a}) = {a} ⊆ {a, b} = {a, b}, in conformity with Property β. We have also
{b} ⊆ {a, b} and S({a, b}) ∩ S({b}) = {b} 6= ∅ and S({b}) = {b} ⊆ S({a, b}) =
{a, b}. Hence Property β is satisfied.

7.3 Proof of Proposition 2

Finite time horizon Consider first the case where (A0X/H0)
α
hi0 ≥ c̃ for

all i ≤ n. In that case, we have S ({1, ..., n}) = {1, ..., n}.
Let us now check whether the model still satisfies RAT. If we withdraw type

j, we obtain the subset {1, ..., j − 1, j + 1, ..., n} ⊆ {1, ..., j − 1, j, j + 1, ..., n}.
Note that it must be the case that S({1, ..., j − 1, j + 1, ..., n}) = {1, ..., j − 1, j + 1, ..., n},
since, if agents of type j disappear, then Ht goes down, and thus the potential
income of other types goes up, so that this cannot push these towards ex-
tinction. Hence, given S({1, ..., j − 1, j + 1, ..., n}) = {1, ..., j − 1, j + 1, ..., n},
it is surely true that S({1, ..., j − 1, j, j + 1, ..., n}) ∩ {1, ..., j − 1, j + 1, ..., n} =
{1, ..., j − 1, j + 1, ..., n} ⊆ S({1, ..., j − 1, j + 1, ..., n}) = {1, ..., j − 1, j + 1, ..., n},
in conformity with Property α.
Regarding Property β, we have, when taking {1, ..., j − 1, j + 1, ..., n} ⊆

{1, ..., j − 1, j, j + 1, ..., n} and S({1, ..., j − 1, j + 1, ..., n})∩S({1, ..., j − 1, j, j + 1, ..., n}) 6=
∅, that S({1, ..., j − 1, j + 1, ..., n}) = {1, ..., j − 1, j + 1, ..., n} ⊆ S({1, ..., j − 1, j, j + 1, ..., n}),
in conformity with Property β.

Hence, by Lemma 1, RAT is necessarily satisfied in that case.
Consider now the case where (A0X/H0)

α
hi0 ≥ c̃ for all i ≤ j and (A0X/H0)

α
hi0 <

c̃ for all i > j.
In that case, we have S ({1, ..., n}) = {1, ..., j}.
Let us now check whether the model still satisfies RAT. If we withdraw type

i ≤ j, we obtain the subset {1, ..., i− 1, i+ 1, ..., n} ⊆ {1, ..., i− 1, i, i+ 1, ..., n}.
Two cases can arise.
If (A0X/H0)

α
hj+1

0 < c̃, then S ({1, ..., i− 1, i+ 1, ..., n}) = {1, ..., i− 1, i+ 1, ..., j}.
Hence, given S({1, ..., i− 1, i+ 1, ..., n}) = {1, ..., i− 1, i+ 1, ..., j}, it is surely
true that S({1, ..., i− 1, i, i+ 1, ..., n})∩{1, ..., i− 1, i+ 1, ..., n} = {1, ..., i− 1, i+ 1, ..., j} ⊆
S({1, ..., i− 1, i+ 1, ..., n}) = {1, ..., i− 1, i+ 1, ..., j}, in conformity with Prop-
erty α. Moreover, regarding Property β, we have, when taking {1, ..., i− 1, i+ 1, ..., n} ⊆
{1, ..., i− 1, i, i+ 1, ..., n} and S({1, ..., i− 1, i+ 1, ..., n})∩S({1, ..., i− 1, i, i+ 1, ..., n}) 6=
∅, that S({1, ..., i− 1, i+ 1, ..., n}) = {1, ..., i− 1, i+ 1, ..., j} ⊆ S({1, ..., i− 1, i, i+ 1, ..., n}),
in conformity with Property β.

Hence, by Lemma 1, RAT is necessarily satisfied in that case.
If, however, (A0X/H0)

α
hj+1

0 ≥ c̃, then S ({1, ..., i− 1, i+ 1, ..., n}) = {1, ..., i− 1, i+ 1, ..., j + 1}.
Hence, given S({1, ..., i− 1, i+ 1, ..., n}) = {1, ..., i− 1, i+ 1, ..., j + 1}, it is surely
true that S({1, ..., i− 1, i, i+ 1, ..., n})∩{1, ..., i− 1, i+ 1, ..., n} = {1, ..., i− 1, i+ 1, ..., j + 1} ⊆
S({1, ..., i− 1, i+ 1, ..., n}) = {1, ..., i− 1, i+ 1, ..., j + 1}, in conformity with
Property α. Hence Property α remains valid. However, regarding Property β,
we have, when taking {1, ..., i− 1, i+ 1, ..., n} ⊆ {1, ..., i− 1, i, i+ 1, ..., n} and
S({1, ..., i− 1, i+ 1, ..., n})∩S({1, ..., i− 1, i, i+ 1, ..., n}) 6= ∅, that S({1, ..., i− 1, i+ 1, ..., n}) =
{1, ..., i− 1, i+ 1, ..., j + 1} * S({1, ..., i− 1, i, i+ 1, ..., n}), against Property β.
Hence, by Lemma 1, RAT is not satisfied in that case.
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Infinite time horizon Consider first the case where (A0X/H0)
α
hi0 ≥ c̃

for all i ≤ n. In that case, we have S ({1, ..., n}) = {n}.
Let us now check whether the model still satisfies RAT. If we withdraw type

j, we obtain the subset {1, ..., j − 1, j + 1, ..., n} ⊆ {1, ..., j − 1, j, j + 1, ..., n}.
Note that it must be the case that S({1, ..., j − 1, j + 1, ..., n}) = {n}, since, if
agents of type j disappear, thenHt goes down, but does not cause a change in the
evolutionary advantage of type n. Hence, given S({1, ..., j − 1, j + 1, ..., n}) =
{n}, it is surely true that S({1, ..., j − 1, j, j + 1, ..., n})∩{1, ..., j − 1, j + 1, ..., n} =
{n} ⊆ S({1, ..., j − 1, j + 1, ..., n}) = {n}, in conformity with Property α.
Regarding Property β, we have, when taking {1, ..., j − 1, j + 1, ..., n} ⊆

{1, ..., j − 1, j, j + 1, ..., n} and S({1, ..., j − 1, j + 1, ..., n})∩S({1, ..., j − 1, j, j + 1, ..., n}) 6=
∅, that S({1, ..., j − 1, j + 1, ..., n}) = {n} ⊆ S({1, ..., j − 1, j, j + 1, ..., n}), in
conformity with Property β.
Hence, by Lemma 1, RAT is necessarily satisfied in that case.
Consider now the case where (A0X/H0)

α
hi0 ≥ c̃ for all i ≤ j and (A0X/H0)

α
hi0 <

c̃ for all i > j. In that case, we have S ({1, ..., n}) = {j}.
Let us now check whether the model still satisfies RAT. If we withdraw type

i ≤ j, we obtain the subset {1, ..., i− 1, i+ 1, ..., n} ⊆ {1, ..., i− 1, i, i+ 1, ..., n}.
Two cases can arise.
If (A0X/H0)

α
hj+1

0 < c̃, then S ({1, ..., i− 1, i+ 1, ..., n}) = {j}. Hence,
given S({1, ..., i− 1, i+ 1, ..., n}) = {j}, it is surely true that S({1, ..., i− 1, i, i+ 1, ..., n})∩
{1, ..., i− 1, i+ 1, ..., n} = {j} ⊆ S({1, ..., i− 1, i+ 1, ..., n}) = {j}, in confor-
mity with Property α. Moreover, regarding Property β, we have, when taking
{1, ..., i− 1, i+ 1, ..., n} ⊆ {1, ..., i− 1, i, i+ 1, ..., n} and S({1, ..., i− 1, i+ 1, ..., n})∩
S({1, ..., i− 1, i, i+ 1, ..., n}) 6= ∅, that S({1, ..., i− 1, i+ 1, ..., n}) = {j} ⊆
S({1, ..., i− 1, i, i+ 1, ..., n}), in conformity with Property β. Hence, by Lemma
1, RAT is necessarily satisfied in that case.
If, however, (A0X/H0)

α
hj+1

0 ≥ c̃, then S ({1, ..., i− 1, i+ 1, ..., n}) = {j + 1}.
Hence, given S({1, ..., i− 1, i+ 1, ..., n}) = {j + 1}, it is clear that S({1, ..., i− 1, i, i+ 1, ..., n})∩
{1, ..., i− 1, i+ 1, ..., n} = {j} * S({1, ..., i− 1, i+ 1, ..., n}) = {j + 1}. Hence
Property α is no longer valid here. Moreover, regarding Property β, we have,
when taking {1, ..., i− 1, i+ 1, ..., n} ⊆ {1, ..., i− 1, i, i+ 1, ..., n}, we have S({1, ..., i− 1, i+ 1, ..., n})∩
S({1, ..., i− 1, i, i+ 1, ..., n}) 6= ∅, so that Property β is trivially satisfied. But
as Property α is not verified, it follows from Lemma 1 that RAT is violated.

7.4 Proof of Proposition 3

Two general cases must be considered: (1) the survival of all types; (2) the
survival of some subset of types.

Case (1): interior stationary distribution We know from Bisin et al.
(2009) that, when all types survive, it must be the case that:∑

i∈{1,...,n}

1

∆V i
>

n− 1

mini∈{1,...,n}∆V i
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Let us check whether the associated evolutionary process satisfies RAT.
To check that property, let us withdraw some type, let us say type j, from

the population.
The LHS of the above condition is reduced by 1

∆V j , while the RHS is re-
duced by 1

mini∈{1,...,n}\{j}∆V i . Given that 1
∆V j ≤ 1

mini∈{1,...,n}\{j}∆V i , the initial
inequality is preserved. Hence we have:∑

i∈{1,...,n}\{j}

1

∆V i
>

n− 2

mini∈{1,...,n}\{j}∆V i

This means that all types {1, ..., n} \{j} still survive. Denoting {1, ..., n} \{j}
by O, and {1, ..., n} by N , we have: O ⊆ N and S(N)∩O ⊆ S(O), in conformity
with Property α.
Consider now Property β. Clearly S(O) ∩ S(N) 6= ∅ and S(O) ⊆ S(N), in

conformity with Property β.
Hence, by Lemma 1, the evolutionary process satisfies RAT.

Case (2): non-interior stationary distribution Consider now the case
where types with a degree of cultural intolerance lower than the one of type k∗

do not survive, whereas types with a degree of cultural intolerance higher than
the one of type k∗ survive.
This means that, initially, we have:∑

i∈{1,...,n}

1

∆V i
≤ n− 1

mini∈{1,...,n}∆V i

We know that, for the surviving types i ∈ {1, ..., k∗}, the following condition
holds (see Section 4.2):

∆V i >
k∗ − 1∑

i∈ {1,...,k∗}
1

∆V i

whereas, for the non-surviving types i ∈ {k∗ + 1, ..., n}, we have:

∆V i ≤ k∗ − 1∑
i∈ {1,...,k∗}

1
∆V i

To check whether Properties α and β are valid or not in that case, we will
consider that some type, let us say type j, is withdrawn from the population.
Two cases can arise: either the withdrawn type did not survive initially (i.e.
j > k∗), or the withdrawn type did survive initially (i.e. j ≤ k∗). We will
consider those two cases successively.
Consider first Property α.
Consider first when the withdrawn type did not initially survive (i.e. j > k∗).
Property α requires that those who were initially surviving and remain in

the population after the withdrawal of some type must still survive after that
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withdrawal. In this context, Property α requires that the new marginal type,
i.e. the least intolerant surviving type after type j has been withdrawn, denoted
by K∗, should be such that K∗ ≥ k∗. To show this, let us proceed by reductio
ad absurdum. Suppose that K∗ < k∗. Assume, for instance, that K∗ = k∗ − 1.
This means that, after the withdrawal of type j, type k∗ does not survive any
more. From the condition for survival of type k∗ before the withdrawal, we have:

∆V k
∗

 ∑
i∈ {1,...,k∗}

1

∆V i

 > k∗ − 1 ⇐⇒ ∆V k
∗

 ∑
i∈ {1,...,K∗}

1

∆V i

 > k∗ − 2

If type k∗ does not survive after the withdrawal of type j, we have:

∆V k
∗

 ∑
i∈ {1,...,K∗}

1

∆V i

 ≤ K∗ − 1 ⇐⇒ ∆V k
∗

 ∑
i∈ {1,...,K∗}

1

∆V i

 ≤ k∗ − 2

The LHS is the same in the two conditions. Hence those two conditions cannot
hold simultaneously, and a contradiction is reached. Therefore, it cannot be the
case that K∗ = k∗ − 1 and that type k∗ does not survive. The same argument
can be used to show that it cannot be the case that K∗ = k∗ − x for any
x > 1 and types k∗ to k∗ − x do not survive. Hence it cannot be the case that
K∗ < k∗. If K∗ < k∗, type k∗ must survive, and all types i < k∗ as well,
so that a contradiction is reached, since the survival of all initially surviving
types contradicts K∗ < k∗. Hence K∗ < k∗ cannot occur. Therefore we have
K∗ ≥ k∗, in conformity with Property α.
Take now the case where the withdrawn type used to survive: j ≤ k∗.
Property α requires that those who were initially surviving and remain in

the population after the withdrawal of some type must still survive after that
withdrawal. In technical terms, Property α requires that the number of surviv-
ing types after the withdrawal, denoted by K∗, is at least equal to k∗ − 1, that
is, K∗ ≥ k∗ − 1. To proof this, let us proceed by contradiction, and suppose
that K∗ < k∗ − 1. Assume, for instance, that K∗ = k∗ − 2. This means that,
after the withdrawal of type j, type k∗ does not survive any more.

From the condition for survival of type k∗ before the withdrawal, we have:

∆V k
∗

 ∑
i∈ {1,...,k∗}

1

∆V i

 > k∗−1 ⇐⇒ ∆V k
∗

 ∑
i∈ {1,...,K∗}\{j}

1

∆V i

 > k∗−2−∆V k
∗

∆V j

If type k∗ does not survive after the withdrawal of type j, we have:

∆V k
∗

 ∑
i∈ {1,...,K∗}\{j}

1

∆V i

 ≤ K∗−1 ⇐⇒ ∆V k
∗

 ∑
i∈ {1,...,K∗}\{j}

1

∆V i

 ≤ k∗−3

The LHS is the same in the two conditions. These two conditions are satisfied
when 1 < ∆V k∗

∆V j , which is never true. Hence a contradiction is reached. Indeed,
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it cannot be the case that K∗ = k∗ − 2 and that type k∗ does not survive.
But if type k∗ does survive, then it is also the case for type k∗ − x for x > 0,
so that K∗ < k∗ − 1 is not possible. Hence the case where K∗ < k∗ − 1
cannot occur. Therefore we have K∗ ≥ k∗ − 1, in conformity with Property α.
Thus we have: {1, ..., n} \{j} ⊆ {1, ..., n} =⇒ S({1, ..., n}) ∩ {1, ..., n} \{j} ⊆
S({1, ..., n} \{j}).
Consider now Property β.
Consider first when the withdrawn type did not initially survive (i.e. j > k∗).
Property β requires that the set of surviving types after the withdrawal of

some type cannot exceed the initial set of surviving types, but must be included
in it. This means that there cannot be any new survivor due to the withdrawal.
Property β requires that the new marginal type, i.e. the least intolerant surviv-
ing type after type j has been withdrawn, denoted by K∗, should be such that
K∗ ≤ k∗. To show this, let us proceed by reductio ad absurdum, and assume
that: K∗ > k∗. Take first the case where K∗ = k∗ + 1. Given that the ex ante
condition for no survival for type k∗ + 1 is:

∆V k
∗+1 ≤ k∗ − 1∑

i∈ {1,...,k∗}
1

∆V i

⇐⇒ ∆V k
∗+1

 ∑
i∈ {1,...,K∗}

1

∆V i

 ≤ k∗
while the survival of type k∗ + 1 after the withdrawal requires:

∆V k
∗+1

 ∑
i∈ {1,...,K∗}

1

∆V i

 > K∗ − 1 ⇐⇒ ∆V k
∗+1

 ∑
i∈ {1,...,K∗}

1

∆V i

 > k∗

The two conditions:

∆V k
∗+1

 ∑
i∈ {1,...,K∗}

1

∆V i

 ≤ k∗ and ∆V k
∗+1

 ∑
i∈ {1,...,K∗}

1

∆V i

 > k∗

cannot be both satisfied. A contradiction is reached. It cannot be the case that
K∗ = k∗ + 1 and type k∗ + 1 now survives. But the same is also true for types
k∗+x for any x > 1. Hence K∗ > k∗ cannot occur. Therefore we have K∗ ≤ k∗,
in conformity with Property β.

Take now the case where the withdrawn type used to survive: j ≤ k∗.
Property β requires that the set of surviving types after the withdrawal of

some type cannot exceed the initial set of surviving types, but must be included
in it. This means that there cannot be any new survivor due to the withdrawal.
In this context, Property β requires that the number of surviving types after
the withdrawal, denoted by K∗, is at most equal to k∗ − 1.

To see why that property is not satisfied when considering the withdrawal of
an initially surviving type, let us show that it is possible that type k∗+1, which
did not survive initially, survives after the withdrawal. The ex ante condition
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for no survival for type k∗ + 1 is:

∆V k
∗+1 ≤ k∗ − 1∑

i∈ {1,...,k∗}
1

∆V i

⇐⇒ ∆V k
∗+1

 ∑
i∈ {1,...,k∗}

1

∆V i

 ≤ k∗ − 1

That condition can be rewritten as:

∆V k
∗+1

 ∑
i∈ {1,...,k∗+1}\{j}

1

∆V i

 ≤ k∗ − ∆V k
∗+1

∆V j

Note that the condition for the survival of type k∗ + 1 after the withdrawal
is:

∆V k
∗+1

 ∑
i∈ {1,...,k∗+1}\{j}

1

∆V i

 > K∗ − 1

where the new number of surviving types K∗ is equal to k∗ as a result of type
k∗ + 1’s survival.

Those two conditions are comptatible, since ∆V k∗+1

∆V j ≤ 1. Hence the non-
survival of type k∗ + 1 before type j is withdrawn from the population is fully
compatible with the survival of type k∗ + 1 after type j is withdrawn.

Hence we have a violation of Property β when an initially surviving type is
withdrawn from the population.
We thus have, when j ≤ k∗, S({1, ..., n}) ∩ S({1, ..., n} \{j}) 6= ∅ =⇒

S({1, ..., n} \{j}) * S({1, ..., n}), against Property β.
By Lemma 1, it follows that the evolutionary process is not rationalizable.

28


