
HAL Id: hal-00817201
https://pjse.hal.science/hal-00817201v1

Preprint submitted on 24 Apr 2013 (v1), last revised 15 Oct 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning in a Black Box
Heinrich H. Nax, Maxwell N. Burton-Chellew, Stuart A. West, H. Peyton

Young

To cite this version:
Heinrich H. Nax, Maxwell N. Burton-Chellew, Stuart A. West, H. Peyton Young. Learning in a Black
Box. 2013. �hal-00817201v1�

https://pjse.hal.science/hal-00817201v1
https://hal.archives-ouvertes.fr


 
 
 
 
 
 
 

WORKING PAPER N° 2013 – 10 
 
 
 

 
 
 

 
Learning in a Black Box 

 

 
  

Heinrich H. Nax 
Maxwell N. Burton-Chellew 

Stuart A. West 
H. Peyton Young 

 
 

JEL Codes : C70, C73, C91, D83, H41 

 
 

Keywords: Learning; Information; Public goods games 
 
 
 
 
 
 
 
 
 
 
 

 

PARIS-JOURDAN SCIENCES ECONOMIQUES 
48, BD JOURDAN – E.N.S. – 75014 PARIS 

TÉL. : 33(0) 1 43 13 63 00 – FAX : 33 (0) 1 43 13 63 10 
www.pse.ens.fr 

 
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE – ECOLE DES HAUTES ETUDES EN SCIENCES SOCIALES 

ÉCOLE DES PONTS PARISTECH – ECOLE NORMALE SUPÉRIEURE – INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE 



Learning in a Black Box∗
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April 18, 2013

Abstract

Many interactive environments can be represented as games, but they are so large and
complex that individual players are in the dark about what others are doing and how
their own payoffs are affected. This paper analyzes learning behavior in such ‘black box’
environments, where players’ only source of information is their own history of actions
taken and payoffs received. Specifically we study repeated public goods games, where
players must decide how much to contribute at each stage, but they do not know how much
others have contributed or how others’ contributions affect their own payoffs. We identify
two key features of the players’ learning dynamics. First, if a player’s realized payoff
increases he is less inclined to change his strategy, whereas if his realized payoff decreases
he is more inclined to change his strategy. Second, if increasing his own contribution
results in higher payoffs he will tend to increase his contribution still further, whereas
the reverse holds if an increase in contribution leads to lower payoffs. These two effects
are clearly present when players have no information about the game; moreover they are
still present even when players have full information. Convergence to Nash equilibrium
occurs at about the same rate in both situations.
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1 Introduction

Many interactive environments can be represented as games, but they are so complex and
involve so many individuals that for all practical purposes the game itself is unknown to
the players themselves. Examples include bidding in on-line markets, threading one’s
way through urban traffic, or participating in a group effort where the actions of the
other members of the group are difficult to observe (guerrilla warfare, neighborhood
watch programs, tax evasion). In each of these cases a given individual will have only
the haziest idea of what the other players are doing yet but their payoffs are strongly
influenced by the actions of the others. How do individuals learn in such environments
and under what circumstances does their learning behavior lead to equilibrium?

In this paper we investigate these questions in a laboratory environment where the un-
derlying game has the structure of a public goods game. Players take actions and receive
payoffs that depend on others’ actions, but (in the baseline case) they have no infor-
mation about the others and they do not know what the overall structure of the game
is. All they know is the amount that they themselves contributed and the payoff they
received as a result. Learning in such environments is said to be completely uncoupled
(Foster & Young, 2006; Young, 2009; see also Hart & Mas-Colell, 2003, 2006;). In this
setting many of the standard learning rules in the empirical literature, such as experience-
weighted attraction, k-level reasoning, and imitation, do not apply because these rules
use the actions of the other players as inputs (Björnerstedt & Weibull, 1993; Stahl &
Wilson, 1995; Nagel, 1995; Ho et al., 1998; Camerer & Ho, 1999; Costa-Gomes et al.,
2001; Costa-Gomes & Crawford, 2006).1

Nevertheless our experiments show that learning ‘inside the box’ can and does take place.2

The learning process exhibits certain distinctive patterns that have been identified in
other settings. Two especially noteworthy features are the following:

Search volatility. A decrease in a player’s realized payoff triggers greater variance in his
choice of action next period, whereas an increase in his realized payoff results in
lower variance next period.

Trend-following. If a higher contribution leads to a higher payoff this period, the player
will tend to raise his contribution next period, whereas if a higher contribution leads
to a lower payoff this period, he will tend to reduce his contribution next period.
Similarly, if a lower contribution leads to a higher payoff the player will tend to
lower his contribution, whereas if a lower contribution leads to a lower payoff he
will tend to increase his contribution next period.

Learning rules with high and low search volatility have been proposed in a variety of set-

1We also note that social preferences cannot enter into subjects’ behavior because they cannot com-
pare their own payoffs with others’ payoffs. Thus the black box environment eliminates some of the
explanations that have been advanced for behavior in public goods games (Fehr & Schmidt, 1999; Fehr
& Gachter, 2000, 2002; Fehr & Camerer, 2007).

2Oechssler & Schipper (2003) show that, in the context of 2x2 games, players can learn to identify the
other player’s payoff structure on the basis of their own payoffs and information about other’s actions. In
our set-up players may or may not learn the game, but even without information about the relationship
between their own and others’ payoffs they do learn to play Nash equilibrium.
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tings, including biology (Thuijsman et al., 1995), organizational learning (March, 1991),
computer science (Eiben & Schippers, 1998), and psychology (Coates, 2012). (In com-
puter science and organization theory this type of learning is known as ‘exploration versus
exploitation’, whereas in biology it is known as ‘fast and slow’ learning.) Search volatility
is also a crucial feature of rules that have recently been proposed in the theoretical litera-
ture; in particular there is a family of such rules that lead to Nash equilibrium in generic
n-person games (Foster & Young, 2006; Germano & Lugosi, 2007; Marden et al., 2009;
Young, 2009; Pradelski & Young, 2012). Trend-following also has antecedents in the ex-
perimental literature, where it is sometimes called directional learning (Selten & Stoecker,
1986; Selten & Buchta, 1998). Directional learning describes behavioral dynamics based
on local adjustments of strategy and aspiration (Sauermann & Selten, 1962; Cross, 1983).
The underlying behavioral components are illustrated in a bargaining game: if a higher
demand results in a higher realized payoff the agent increases his demand, whereas a
decrease in realized payoff leads to a demand decrease (Tietz & Weber, 1972; Roth &
Erev, 1995).

In this paper we show that these two patterns help explain the behavior of subjects who
are learning in a ‘black box’ environment. Moreover, despite the lack of information
and the simplicity of the adjustment rules, the behavior of the group approaches Nash
equilibrium and does so at approximately the same rate as in the situation where subjects
have full information (Burton-Chellew & West, 2012). As we shall see, this is true both
when free riding is the dominant strategy, and also when full contribution is the dominant
strategy. We conclude that even when subjects have virtually no information about the
game, learning follows certain distinctive patterns that have been documented in a wide
variety of learning environments, and in public goods games this behavior leads to Nash
equilibrium at a rate that is very similar to learning under full information.

We structure the paper as follows. In section 2 we describe the experimental set-up in
detail. In section 3 we present the empirical findings together with statistical tests of
significance. We conclude in section 4.

2 Experimental set-up

Participants were recruited from a subject pool that had not previously been involved
in public goods experiments. The subjects were not limited to university students, but
included different age groups with diverse educational backgrounds.3 Each subject played
four separate contribution games, where each game was repeated twenty times. The
twenty-fold repetition of a given game will be called a ‘phase’ of the experiment. This
yields a total of 236 games and 18,880 observations. During sixteen separate sessions in
groups of sixteen or twelve, subjects play the four phases in a row.

Games differ with respect to two rates of return (‘low’ and ‘high’) such that either ‘free-

3The subjects were recruited through the Online Recruiting System for Economic Experiments
(Greiner, 2004) with this request specifically made. The experiment was programmed and conducted with
the software z-Tree (Fischbacher, 2007). All experiments were conducted at the Centre for Experimental
Social Sciences (CESS) at Nuffield College, University of Oxford.
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riding’ or ‘full-contributing’ is the dominant strategy. Treatments differ with respect to
the information that is revealed to the agents (‘black box’, ‘standard’ and ‘enhanced’).
Every player plays both black box games, and either the two standard or enhanced
information games. Either two black box games are played first, or two games of one
of the other two treatments.4 The two first phases constitute stage one, the second two
constitute stage two. Each possible information order is played in four separate sessions,
each of which with a different order of the two rates of return.5

In this section, we shall describe the underlying stage game, the structure of each repeated
game, and the different information treatments.

2.1 Linear public goods game

Consider the following linear public goods game. Every player i in population N =
{1, 2, ..., n} makes a nonnegative, real-numbered contribution, ai, from a finite budget
B ∈ N+. Given a resulting vector of all players’ contributions, a = {a1, a2, ..., an}, for
some rate of return, e ≥ 1, the public good is provided, R(a) = e

∑
i∈N ai, and split

equally amongst the players.6 Given others’ contributions a \ ai, player i’s contribution
ai therefore results in a payoff of

φi = e/n
∑
i∈N

ai + (B − ai),

where e/n is the marginal rate of return. Write φ for the payoff vector {φ1, ..., φn}.

Nash equilibria. Depending on whether the rate of return is low (e < n) or high
(e > n), individual contribution of either zero (free-riding) or B (full-contributing) is
the strictly dominant strategy for all players; the respective Nash equilibrium results in
either nonprovision or full provision of the public good.7

2.2 Repeated game

In any session, the same population S (with |S| = 12 or 16) plays four phases. Each phase
is a twenty-times repeated, symmetric public goods game. In each period t of each game,
players in S are randomly matched to groups of four to play the stage game. The budget
every period is a new B = 40 to every player of which he can invest any amount, but he
cannot invest money carried over from previous rounds. The rate of return is either low
(e = 1.6) or high (e = 6.4) throughout the game.8 Write N t

4 for any of the four-player

4Of the 18,880 observations, 9,440 are black box, 4,640 are standard, and 4,800 are enhanced.
5This yields sixteen different scenarios each played in one of the sessions given by the possible orders

and permutations; four (combinations) times four (orders) equals sixteen (sessions).
6If e < 1, R(a) is a public bad.
7When e = n, any contribution is a best reply to any level of contribution by the others, hence any

level of provision is supported by at least one pure-strategy Nash equilibrium.
8The Nash equilibrium payoffs of the stage games are 40 when e = 1.6, and 256 when e = 6.4.
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groups matched at time t, and ρt4 for the partition of S into such groups. Given at, ρt4,
N t

4, in any period t such that i ∈ N t
4 ∈ ρt4, each i receives

φi =
∑

t=1,...,20

φt
i =

∑
t=1,...,20

[e/4
∑
j∈Nt

4

atj + (40− ati)].

For every i, φi represents a real monetary value that is paid after the game.9

2.3 Information treatments

Before the first game begins, each player is told that two separate experiments will be
played. (From the analyst’s point of view the experiment consists of both of these taken
together.) At no point before, during, or in between the separate phases of the exper-
iment are players allowed to communicate. Depending on which treatment is played,
the following information is revealed at the start of each stage when a new treatment
begins.

All treatments. Two separate but possibly different twenty-times repeated stage games
are played. In each, the underlying stage game is unchanged for 20 periods. Each
player receives 40 coins each period of which he can invest any amount. Moreover,
after investments are made, each player gets a nonnegative return each period which,
at the end of each game, he receives together with his uninvested money according
to a known exchange rate.

Black box. No further information about the structure of the game, or about other
players’ actions or payoffs is revealed. Throughout the game, therefore, players
only know their own investments and payoffs.

Standard. The rules of the game are revealed including production of the public good,
rate of return, and how groups in the session form to play each stage game. In
addition, at the end of each period, players receive a summary of the relevant
contributions in their previous-period group; not knowing who these players are
and what payoffs they receive.10

Enhanced. In addition to the information available in the standard treatment, players
learn about the other group members’ previous-period payoffs.

(See Appendix A for full black box instructions and Appendix B for the output screens
displayed during the experiment for each treatment.)

3 Findings

First, we analyze the black box data when players have no prior experience of public
goods games. Second, we assess the effects of experience. Third, we assess the effects of

9Hundred coins are worth £0.15 to pay £19.2 maximal individual earnings from the whole experiment.
10This follows the standard information treatment design and procedure of rematching subjects as

introduced by Andreoni (1988).
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information being revealed about the game structure and about other players’ previous
contributions (and payoffs). We carry out the analysis for both high (e = 6.4) and low
(e = 1.6) rates of return. For each step of the analysis, we first use nonparametric
tests to establish distributional differences in the different treatments and game, and
then use regressions controlling for phase, period, individual, group and past payoff and
contribution effects.

3.1 Black box

In this section, we analyze the black box treatments when played before the standard
or enhanced treatments. There were eight such sessions and 4,960 observations. By
choosing these sessions, we ensure that players not only have no explicit knowledge of the
game structure and no information about others, but also have no “experience” of the
game.11 Unless stated otherwise, “significance” refers to a 95% confidence interval when
rejecting an opposite null and to a 90% confidence interval when a hypothesis cannot be
rejected.

3.1.1 Contributions

The mean initial contribution lies between one third and half the budget.12 Using period-
specific Mann-Whitney tests, we cannot reject the null of equal contributions for games
with different rates of return and for phase one versus phase two, that is, similar obser-
vations are made in all games (with different rates of return) played in all initial black
box treatment games. This is evidence of “restart effects” (observed throughout the lit-
erature).13 The period-two adjustments to the initial contribution have means close to
zero.14 Notably, a large part of these contributions lie at 0, 10, 20, 30, 40, with several
contributions made also in the range from 1 to 9; contributions at other numerical values
are rare.15 Using period-specific Mann-Whitney tests, we cannot reject the null of equal
contributions for different rates of return for periods 1 through to period 3.

(Figure 1 illustrates.)

In the early periods of black box treatments, this is the behavior one would expect
and that this is consistent with hundreds of previous experiments on public goods.16

Since players have no knowledge of the differences in the game structures, they initially
make random contributions and play different games in much the same way. Note that
players initially contribute less than half of their budget, another observation consistent
with previous experimental results. A possible explanations for this is ambiguity aversion

11Recall subjects were explicitly chosen to not have experience from previous experiments. In Section
4, we will test for experience and information effects by comparison with the rest of the data.

12The mean is 15.3 in the games with e = 1.6, and 13.9 in the games with e = 6.4.
13See Andreoni, 1988; Croson, 1996; Cookson, 2000; Camerer, 2003.
14Means are 0.4 when e = 1.6 and 1.6 when e = 6.4.
15As is usually the case; see Camerer, 2003.
16As surveyed, for example, in Chaudhuri, 2011.
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Figure 1: Initial contributions (phases 1,2).
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Initial contributions often lie at 0, 10, 20, 30, 40, with several contributions made also
in the range from 1 to 9; contributions at other numerical values are rare.

(Epstein, 1999).17 At the beginning of the game, players cannot judge their initial payoffs
to be particularly “good” or “bad”, and therefore have no comparison concerning the
performance (“success” vs. “failure”) of different strategies. One would consequently
not expect an obvious direction for the initial-period adjustments, and indeed they are
similarly random until period 3 for the different rates of return.

(Figure 2 illustrates.)

If players were not to learn at all, one would expect similar behavior throughout the
games. Using period-specific Mann-Whitney tests, however, we reject the null of equal
contributions for different rates of return in all periods after period 3. Moreover, play
evolves following distinctly different patterns: the contributions towards the end of the
game are closer to the respective stage game Nash equilibrium.18 Simple linear regressions
of contributions on a time trend (controlling for phase and group) reveal a trend of -0.6
when e = 1.6 (significant at 99%), and of +0.1 when e = 6.4 (significant at 90%). Note the
trend is accentuated in the games with e = 1.6.19 When e = 6.4, the mean contribution

17In Fehr & Schmidt, 1999, for example, mean contributions are ca. 40 percent of the budget; this
would mean ca. 16 in our experiment.

18Means are 5.7 when e = 1.6 and 18.5 when e = 6.4.
19This pattern is consistent with previous experiments as, for example, noted in Ledyard, 1995. Note
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Figure 2: Mean black box play (phases 1,2).

25

e=6.4

20

15

10

M
e

a
n

 c
o

n
t
r
ib

u
t
io

n

e=1.6

10

M
e

a
n

 c
o

n
t
r
ib

u
t
io

n

5

M
e

a
n

 c
o

n
t
r
ib

u
t
io

n

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PeriodPeriod

Contributions deteriorate in the free-riding game. This trend is accentuated compared to
the full-contribution games which display a weak positive trend.

never exceeds twenty and thus remains more than “halfway” from the Nash contribution.
Again, players’ ambiguity aversion may explain this phenomenon.20

(Figure 3 illustrates.)

To summarize our observations regarding aggregate contributions in free-riding games,
we reconfirm the standard findings from the literature regarding initial contributions,
restart effects and contribution deterioration. Moreover, we note that in games where full-
contributing is Nash, the observed trends to Nash equilibrium are substantially weaker.
Higher contributions seem harder to learn.

3.1.2 Difference in variation

Adjustment. The adjustment of a player i in period t is at+1
i − ati.

Success versus failure. A player i experiences success in period t + 1 if his realized
payoff does not go down (φt+1

i ≥ φt
i); otherwise he experiences failure.

our contributions decline more sharply than in Bayer et al. (2013), possibly indicating a “within-game
restart effect” in their experiments since players are lead to believe that underlying stage games are
changing.

20A contribution decrease represents less ambiguity and is, ceteris paribus, preferred by ambiguity-
averse agents, a contribution increase results in more ambiguity (Schmeidler, 1989).
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Figure 3: Final contributions.

20

25

30

35

40

45

50

F
re

q
u

e
n

cy

Period 20, e=1.6

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

F
re

q
u

e
n

cy

Contributions

15

20

25

30

F
re

q
u

e
n

cy

Period 20, e=6.4

0

5

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

F
re

q
u

e
n

cy

Contributions

Final contributions amass close to zero in the free-riding game, and split between contri-
butions close to zero and 40 for the full-contribution game.

Table 1: Adjustments after success and failure (phases 1,2; pooled data).

statistic success failure

variance 123.9 188.5
mean +0.8 -1.2

SEARCH: the variance after success is lower than after failure; the average adjustments
are close to zero.

Based on a Levene’s test (robust variance), the hypothesis of equal variances of adjust-
ments following success versus failure is rejected with 99% confidence.21 Furthermore,
we regress absolute adjustments on success versus failure controlling for phase, period,
individual, group, and two lags of contributions and payoffs. We obtain a significantly
(99%) smaller coefficient of adjustment following success (by -1.2) than after failure.
The phase dummies are not significant. None of the period dummies is significant after
period 3. One of the group dummies is significant. The previous-period payoffs and
contributions are significant, those lagged two periods are not significant. We conclude
that players’ adjustments of successful contributions have a smaller variation than ad-
justments of unsuccessful contributions. As discussed in sections 1 and 2 of this paper,
the phenomenon of “different adjustments following success versus failure” is a feature of
“search” in several recent learning models.22 Subsequently, we shall refer to this feature
as SEARCH.

(Table 1 summarizes.)

21The robust variance test is not rejected dependent on whether e = 1.6 (mean -0.5) or 6.4 (0.2).
22See Young, 2009; Marden et al., 2011; Pradelski & Young, 2012.
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Table 2: TREND hypothesis.

given success in period t given failure in period t
Player i in period t+ 1 (φt

i ≥ φt−1
i ) (φt

i < φt−1
i )

given an increase in period t increases contribution decreases contribution
(ati > at−1i ) with respect to period t− 1 with respect to period t

given a decrease in period t decreases contribution increases contribution
(ati < at−1i ) with respect to period t− 1 with respect to period t

3.1.3 Directional learning

Our games have the following structure of which subjects in the black box are unaware.
First, contributions range from 0 to 40, and the Nash equilibrium lies at either end.
Second, an individual’s payoff rises with the contributions of the other players but may
rise or fall with his own adjustment depending on the game’s underlying rate of return.
Importantly, in varying his own contribution, the individual agent is unable to distinguish
between a self-induced success versus failure, and one that is caused by others: in the
interplay with others, incremental adjustments in either direction may lead to higher or
lower payoffs.23 The structure of the action space calls for a directional learning model
(Selten & Stoecker, 1986; Selten & Buchta, 1998).

Given period t, a player i may increase or decrease his contribution relative to his contri-
bution in the previous period. As a result, he experiences either success or failure. Table
2 shows the model of directional adjustments that we propose and shall subsequently
refer to as TREND.

To test the TREND hypothesis, we regress adjustments relative to two lags of contribu-
tions period controlling for phase, period, individual, group, two payoff lags, and previous
contribution for failure and success adjustments separately.

After failure, we obtain significant coefficients for decrease with respect to the previous-
period contribution (-3.4; significant at 99%) following an increase, and for increase with
respect to the previous-period contribution (+2.2; significant at 99%) following a decrease.
None of the phase or group dummies is significant. None of the period dummies after
period 4 is significant. Past payoffs have significant but marginal (less than 0.05) effects.
The previous contribution has a negative effect (-0.6; significant at 99%). Trend reversal
after failure therefore summarizes as follows:

• If an increase is a failure in the current period, the average next-period adjustment
relative to the current period –net of negative level effects– is a decrease instead.
Similarly, if a decrease is a failure in the current period, the average next-period

23The effects that a player’s own actions and those of others have on one’s own payoff are important
features in Young, 2009; Marden et al., 2011; Pradelski & Young, 2012.
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adjustment relative to the current period –net of negative level effects– is an increase
instead.

After success, we obtain significant coefficients for increase with respect to contributions
two periods ago (+7.1; significant at 99%) following an increase, and for decrease with
respect to contributions two periods ago (-12.5; significant at 99%) following a decrease.
The previous contribution has a negative effect (-0.2; significant at 99%). All other
coefficients are insignificant as in the failure case. Trend following after success therefore
summarizes as follows:

• If an increase is a success in the current period, the average next-period adjustment
relative to the previous period –net of negative level effects– is another increase.
Similarly, if a decrease is a success in the current period, the average next-period
adjustment relative to the previous period –net of negative level effects– is another
decrease.

Based on TREND, given two previous contributions and a success versus failure stimulus,
the relative location of the expected next-period contribution is unknown. This is because
TREND implies adjustment tendencies only with respect to the current period after
failure, and with respects to the previous period after success. It is unclear where, given
both current and previous contributions, the next-period contribution will lie after either
success or failure is experienced.

(Figure 4 illustrates.)

We shall illustrate this point with an example as illustrated in Figure 4, if an agent
contributes 10 in one period and 20 in the next, on average he contributes at least
10 if 20 was a success, and less than 20 if 20 was a failure. The following (stronger)
hypothesis has been considered (Bayer et al., 2013): given two previous contributions,
the next contribution is, in expectation, closer to the contribution which resulted in a
higher payoff. If the stimulus is trend-neutral, the expectation lies exactly at the average.
As illustrated in Figure 5, if an agent contributes 10 in one period and 20 in the next,
on average he contributes at least 15 if 20 was a success, and less than 15 if 20 was a
failure.

(Figure 5 illustrates.)

We regress contribution adjustments on the four trends controlling for phase, period,
individual, group, two payoff lags, previous contribution. This yields the following ef-
fects:

given ati and at+1
i of some individual i, the net average adjustments, controlling for level

effects, are

11



Figure 4: TREND without level effect.

TREND without level effects: success versus failure leaves an intermediate range over
which predictions are ambiguous.

E(at+2
i ; at+1

i , ati)−
ati+at−1

i

2
= φt

i ≥ φt−1
i φt

i < φt−1
i

ati > at−1i +3.6∗∗ +0.3◦◦

ati < at−1i −6.5∗∗ −1.9∗◦

∗∗: significant at 99%, consistent with the average hypothesis.
◦◦: significant below 80%, inconsistent with the average hypothesis.
∗◦: significant at 99%, inconsistent with the average hypothesis.

Note that the adjustments following success point in the “right” direction (following
success) and are significant. The adjustments following failure point in the “wrong”
direction (following failure) and are significant in case of decrease. As before, the previous
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Figure 5: Average adjustment hypothesis (Bayer et al., 2013).

The average adjustment hypothesis ignores level effects and places further structure on
TREND, making predictions over the intermediate range where TREND remained am-
biguous.

contribution has a significant negative effect of -0.4 (with 99% confidence). Previous
profits have a marginal but significant effect. If we drop the two payoff lags and the
previous contribution from the regression (since they are not included in the average
adjustment model), we improve in terms of the model’s predictions but not regarding all
aspects:

given ati and at+1
i of some individual i, the gross average adjustments, not controlling

for level effects, are
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E(at+2
i ; at+1

i , ati)−
ati+at−1

i

2
= φt

i ≥ φt−1
i φt

i < φt−1
i

ati > at−1i +1.4
∗ −3.3∗∗

ati < at−1i −5.4∗∗ −0.9◦◦

∗
: significant at 95%, consistent with the average hypothesis.
∗∗: significant at 99%, consistent with the average hypothesis.
◦◦: significant at 80%, inconsistent with the average hypothesis.

We conclude that there is strong evidence for TREND including negative previous-period
contribution level effects. Ceteris paribus, a higher previous-period contribution leads to
a negative adjustment. Depending on trend stimulus (success or failure), success trends
are followed with respect to the contribution two periods ago, failure trends are reversed
with respect to the previous contribution. The size of the adjustments relative to the
previous two-period average is ambiguous and depends on the level of the previous-
period contribution as well as the spread of the two previous contributions. A learning
model assuming average adjustments without level effects gives consistent predictions in
the success and increase directions; given a decrease-failure, however, it makes wrong
predictions. It is worth noting that in the context where the average adjustment rule
was originally formulated (Bayer et al., 2013), the problematic decrease-failure trends
are relatively rare because only games where free-riding is Nash are played. The most
common failure in those games comes from contributing more, not less.24

3.1.4 Experience

In this section, we analyze the whole black box data including sixteen sessions and 9,440
observations. In 4,480 observations, individuals have “experience” in the sense that they
play the black box games in the second stage having previously played a non-black box
treatment in the first stage where they received information about the game structure
and about other players’ past actions (and payoffs). Even though subjects are explicitly
told that a separate experiment is started after the first stage of the experiment, there is
evidence that experience matters.

First, we test for distributional differences in contributions using period-specific Mann-
Whitney tests for the two rates of return separately. The following observations are made.
In the initial period, restart effects are noted as previously. For both rates of return
separately, the null hypothesis of equal contributions dependent on experience versus no
experience cannot be rejected. Furthermore, there is no significant difference in between
the two rates of return which is natural since players have no basis to distinguish between

24Conversely, in the games where full-contributing is Nash, decreases are the more common failures.
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them.25 If e = 6.4, the null hypothesis of equal contributions dependent on experience
versus no experience can be rejected with 90% confidence after period 5 except for periods
16 and 17. If e = 6.4, it cannot be rejected in any period.

Second, we compare the linear time trends of contributions. Simple linear regressions
controlling for phase and group reveal a similar trend as before if e = 1.6 (-0.5; significant
at 99%) but a stronger drift e = 6.4 (+0.3; significant at 99%). Previously the respective
trends were -0.6 (99%) and +0.1 (90%). Hence the contributions in games with high rates
of return improve faster with experience, but there is no significant difference in play of
games with low rates or return.

Finally, we perform the linear regressions with respect to SEARCH (absolute size of
adjustments) and TREND (directional adjustments) from the previous section controlling
for the same effects and adding experience dummies for both rates of return. We obtain
the following results. The absolute size of adjustments (SEARCH) is decreasing in time
(all period dummies after period 3 are negative and significant), and decreasing with
experience. As before, the previous contribution is a positive and significant factor. Payoff
level effects are significant but marginal. All other effects (including phase dummies) are
not significant. With respect to directional adjustments (TREND), experience leads to
larger contributions but the direction of adjustments is unchanged. As before, the level
of previous contributions is a negative and significant factor. All period dummies after
period 4 are negative. All other effects are as before.

(Figure 6 illustrates.)

We conclude that experience has two main effects. On the one hand, experience decreases
the SEARCH effect but preserves its sign. On the other hand, experience leads to larger
contributions over time when e = 6.4, but has no significant effect when e = 1.6. In
much a different setting, our findings complement the findings concerning experience
in games with low rates of return from Marwell & Ames (1981), Isaac et al. (1984),
Isaac et al. (1988) by analysis of games with high rates of return and by identifying a
common SEARCH feature when standard information is withheld. In fact, it turns out
that experience has a more significant effect in games where free-riding is not Nash (when
e = 6.4) in which case experienced players contribute more and learn Nash equilibrium
at a faster rate. A possible explanation for this is that experience reduces the agents’
perceived ambiguity of the game.

3.2 Information

In this section, we shall investigate whether SEARCH and TREND are only features of
black box behavior or whether they persist if players have more information. We shall
find that SEARCH is very robust and persists in all information settings, while TREND
is fairly robust but more sensitive to the information setting and rate of return.

25The initial contributions for both rates of return lie between 14 and 15 in all four phases of the
experiment.
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Figure 6: Mean black box play (phases 1,2 versus 3,4).
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Experience plays no visible role in the free-riding games. Experience has a positive effect
in the full-contribution games.

3.2.1 Distributional differences

Using period-specific Mann-Whitney tests we test for differences in contributions in the
three information treatments for both rates of return.26 It turns out that initial black box
contributions are significantly lower than non-black box contributions for both rates of
return. There are no differences in initial contributions between standard and enhanced
treatments but significant differences with the black box treatment.27 After period two,
all treatments are significantly different from each other in all periods except standard
and black box play when e = 1.6 which are not significantly different in any period.
When e = 6.4, standard treatment contributions significantly exceed enhanced treatment
contributions which exceed black box contributions. When e = 1.6, standard and black
box contributions are not significantly different from each other but exceed enhanced
treatment contributions. In the final period, of all three treatments, enhanced information
is closest to Nash equilibrium when e = 1.6, while standard and black box are closer to
Nash when e = 6.4.

(Table 3 and Figure 7 illustrate.)

26This yields three tests for each period for both high (when e = 6.4) and low (when e = 1.6) rates of
return as summarized in Table 3.

27Recall that initial black box contributions lie below 20 and show no differences for the two rates of
return (see section 3.1.1). Initial contributions are higher for both standard and enhanced treatments;
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Table 3: Mann-Whitney tests of equal contributions.

comparison period

e = treatments 1 2 3 4 5 . . . 20

1.6 enhanced vs. standard = ∗∗ ∗∗ ∗∗ ∗∗ . . . ∗∗

black box vs. enhanced ∗∗ = ∗∗∗ ∗∗∗ ∗∗∗ . . . ∗∗∗

black box vs. standard ∗∗ ∗ = = = . . . =

6.4 enhanced vs. standard = = ∗∗ ∗∗ ∗∗∗ . . . ∗∗∗

black box vs. enhanced ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ . . . ∗∗∗

black box vs. standard ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ . . . ∗∗∗

Significance: ∗: 90%; ∗∗: 95%; ∗∗∗: 99%; =: not significant.

Figure 7: Mean play all treatments (black box, standard, enhanced).
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Black box: initial contributions are low; trend when e = 1.6, weak trend when e = 6.4.
Standard and enhanced: initial contributions are higher; enhanced trend steeper than
standard trends when e = 1.6, weak trends if e = 6.4.
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3.2.2 SEARCH

Testing for SEARCH, we perform our linear regressions (see section 3.1.2) for each rate of
return separately, further controlling for black box, standard and enhanced information
effects. We make the following observations. First, (more) information leads to less
variation in adjustments in between time periods: for both rates of return, variation
in adjustments between time periods in enhanced treatments is lower than in standard
treatments which is lower than in black box treatments. The standard dummy is negative
and significant at 95% but less negative than the enhanced dummy which is also significant
at 95%. In all treatments and for both rates of return, success in the previous period
leads to less variation in adjustments between time periods than failure in the previous
period, and previous-period contributions have a positive level effect. None of the period
dummies is significant, but all of the phase dummies are negative. In later phases,
therefore, experience and information jointly further reduce variation in adjustments
between time periods.

3.2.3 TREND

Testing for TREND, the relevant linear regressions (see section 3.1.3) become somewhat
difficult to interpret. Net of level effects, the basic constituents of TREND continue to
be significant. The main differences concern the size of the level effects and effects from
earlier periods. In the black box treatments, only contributions in the previous period
but not two periods ago are significant. In the non-black box treatments, however,
contributions two periods ago are also significant in some but not all of the games.
With 95% confidence, the level of contribution two periods ago has a negative effect on
contributions in games with e = 1.6 under the enhanced treatment but not under the
standard treatment. If e = 6.4, the level of contribution two periods ago has a positive
effect (with 95% confidence) on contributions under the standard treatment but not under
the enhanced treatment. This suggests longer “memory” effects in some but not in all
of the non-black box treatments, and not necessarily in those with more information.
Further difference with respect to the previous-period contribution effects are observed.
These are significant at the 90% confidence interval. Enhanced information has a positive
fixed effect on games with e = 6.4 but not on games with e = 1.6 (players contribute
more), while standard information has a negative effect on games with e = 1.6 (players
contribute less). Overall, therefore, enhanced information leads to play over time that
gets closer to the Nash equilibrium than black box and standard treatment play in the
games with e = 1.6, while standard information play gets closer to the Nash equilibrium
than standard and black box treatment play in the games with e = 1.6.

3.2.4 Summary

Comparing black box with standard and enhanced treatments, we observe the following
distributional differences. Initial contributions are higher in both standard and enhanced

close to 20 when e = 1.6, and above 20 when e = 6.4.
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treatments (and not different from each other), and this finding includes the games with
e = 1.6 where such contributions are worse replies in terms of the game’s Nash equi-
librium. After period two, there are significant differences between all three treatments
when e = 6.4. When e = 1.6, there are no differences between black box and standard
treatments, and enhanced treatment contributions are significantly lower. In fact, en-
hancing the information relative to standard treatments leads to lower contributions in
all games; these are higher than black box contributions when e = 6.4 and lower than
black box contributions when e = 1.6.

Let us briefly summarize our results regarding SEARCH and TREND. SEARCH is robust
in all treatments. More experience and more information reduce the size of this effect but
preserve its sign. TREND including level effects is robust in black box treatments with
or without experience. Inside the box, adjustments are made dependent on whether the
previous adjustment was successful or not. There is weaker evidence for TREND adjust-
ments in the non-black box data and further contribution lags are significant. TREND
behavior is likely to interact and depend on other factors such as social preferences.

4 Conclusion

In many real-world situations, individuals have no information about the other players’
actions or payoffs. In such environments, behavior must be completely uncoupled from
such information, and instead be based entirely on agents’ own past actions and payoffs.
Outside game theory, these rules have a long tradition dating back to Thorndike (1898).
In our black box treatment, we enforce completely uncoupled behavior in the context
of public goods games. Our two main findings identify search features and behavioral
elements of directional learning. Experience and information reduce the magnitude of
the search feature but it is still present at a statistically significant level. Moreover,
players follow directed adjustment dynamics based on their previous contribution levels
and previous success-versus-failure stimuli. This suggests that, even with experience,
players’ learning inside the box displays no significant evidence of acquiring a global
notion of one action dominating another. Some but not all of the directional adjustment
tendencies change when more information is revealed.

Recent game-theoretic models provide explanations for how different concepts of equilib-
rium can learned based on completely uncoupled behavior. In particular, search volatility
is a key feature of the trial and error learning model proposed by Young (2009), which
implements Nash equilibrium. Variants of these rules implement welfare-maximizing
states (Marden et al., 2011) and welfare-maximizing Nash equilibria (Pradelski & Young,
2012). Completely uncoupled learning dynamics can also be applied to cooperative games,
where they implement the core (Nax et al., 2012) and the Nash bargaining solution (Nax,
2013).

Much of the prior empirical work on learning in games has focussed on situations where
players have a substantial amount of information about the structure of the game, and
they can observe the behavior of others as learning proceeds. In this paper by contrast,
we have examined situations in which players have no information about the strategic
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environment, and they must feel their way based solely on the pattern of realized payoffs.
We identified two key features of such completely uncoupled learning dynamics – search
volatility and directional adjustments, both of which have antecedents in the psychology
literature. Search volatility in particular has not been examined previously in the context
of experimental game theory and turns out to be very robust even when players gain
experience and information. Whether this remains true for other classes of games is an
open question for future research.

Appendices

Appendix A

Black box instructions

Participants received the following on-screen instructions (in z-Tree) at the start of the
Black Box game and had to click an on-screen button saying, “I confirm I understand
the instructions” before the game would begin:

Instructions

Welcome to the experiment. You have been given 40 virtual coins. Each ‘coin’ is worth
real money. You are going to make a decision regarding the investment of these ‘coins’.
This decision may increase or decrease the number of ‘coins’ you have. The more ‘coins’
you have at the end of the experiment, the more money you will receive at the end.

During the experiment we shall not speak of £Pounds or Pence but rather of “Coins”.
During the experiment your entire earnings will be calculated in Coins. At the end of
the experiment the total amount of Coins you have earned will be converted to Pence at
the following rate: 100 Coins = 15 Pence. In total, each person today will be given 3,200
coins (£4.80) with which to make decisions over 2 economic experiments and their final
totals, which may go up or down, will depend on these decisions.

The Decision

You can choose to keep your coins (in which case they will be ‘banked’ into your private
account, which you will receive at the end of the experiment), or you can choose to put
some or all of them into a ‘black box ’.

This ‘black box ’ performs a mathematical function that converts the number of coins
inputted into a number of coins to be outputted. The function contains a random com-
ponent, so if two people were to put the same amount of coins into the ‘black box ’, they
would not necessarily get the same output. The number outputted may be more or less
than the number you put in, but it will never be a negative number, so the lowest out-
come possible is to get 0 (zero) back. If you chose to input 0 (zero) coins, you may still
get some back from the box.

Any coins outputted will also be ‘banked’ and go into your private account. So, your
final income will be the initial 40 coins, minus any you put into the ‘black box ’, plus all
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the coins you get back from the ‘black box ’.

You will play this game 20 times. Each time you will be given a new set of 40 coins
to use. Each game is separate but the ‘black box ’ remains the same. This means you
cannot play with money gained from previous turns, and the maximum you can ever put
into the ‘black box ’ will be 40 coins. And you will never run out of money to play with
as you get a new set of coins for each go. The mathematical function will not change
over time, so it is the same for all 20 turns. However as the function contains a random
component, the output is not guaranteed to stay the same if you put the same amount
in each time.

After you have finished your 20 turns, you will play one further series of 20 turns but
with a new, and potentially different ‘black box ’. The two boxes may or may not have
the same mathematical function as each other, but the functions will always contain a
random component, and the functions will always remain the same for the 20 turns.
You will be told when the 20 turns are finished and it is time to play with a new black
box.

If you are unsure of the rules please hold up your hand and a demonstrator will help
you.

I confirm I understand the instructions

Appendix B

On-screen output in each treatment

Supplementary Figures: the post-decision feedback information that participants re-
ceived: (a) in the black-box treatment; (b) the first feedback screen in both the standard
and the enhanced-information treatments; and (c) the second feedback screen, which
differed between the two treatments (not shown in black-box treatment). Dashed lines
border the information that was only shown in the enhanced-information treatment.
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