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Abstract

Many interactive environments can be represented as games, but they are so large and

complex that individual players are in the dark about others’ actions and the payoff

structure. This paper analyzes learning behavior in such ‘black box’ environments, where

players’ only source of information is their own history of actions taken and payoffs

received. Specifically we study voluntary contributions games. We identify two robust

features of the players’ learning dynamics: search volatility and trend-following. These

features are clearly present when players have no information about the game; but also

when players have full information. Convergence to Nash equilibrium occurs at about

the same rate in both situations.

JEL classifications: C70, C73, C91, D83, H41

Keywords: learning, information, public goods games

1 Introduction

Many interactive environments can be represented as games, but they are so complex and

involve so many individuals that for all practical purposes the game itself is unknown to

the players themselves. Examples include bidding in on-line markets, threading one’s way

through urban traffic, or participating in a group effort where the actions of the other

members of the group are difficult to observe (guerrilla warfare, neighborhood watch

programs, tax evasion). In each of these cases a given individual will have only the

haziest idea of what the other players are doing but their payoffs are strongly influenced

by the actions of the others. How do individuals learn in such environments and under

what circumstances does their learning behavior lead to equilibrium?

In this paper we investigate these questions in a laboratory environment where the un-

derlying game has the structure of a public goods game. Players take actions and receive

payoffs that depend on others’ actions, but (in the baseline case) they have no informa-

tion about the others and they do not know what the overall structure of the game is.

This distinguishes our experimental setup from other “low-information” setups such as

Rapoport et al. (2002) and Weber (2003) who provide information about the structure

of the game but withhold information about the distribution of players’ types and the

outcome of play, or Friedman et al. (2012) who withhold information about the payoff

structure of the game but provide information about other players’ actions and payoffs.

The closest “low-information” set-up to ours is that of Bayer et al. (2013) who also

implement experiments without information about the structure of the game and about
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other players. However, their set-up purposefully induces a “confusion” element that the

game structure itself may also change. In our setup, the structure of the game, although

it is unknown to the agents, remains fixed and agents know that. Perhaps the closest

antecedent of our ‘black box’ treatments are repeated two-by-two zero sum games used

to test the early Markov learning models by Suppes & Atkinson (1959).1

As the game proceeds, all agents know is the amount that they themselves contributed

and the payoff they received as a result. Learning in such an explicitly repated game

environment is said to be completely uncoupled (Foster & Young, 2006; Young, 2009;

see also Hart & Mas-Colell, 2003, 2006;). In this setting many of the standard learning

rules in the empirical literature, such as experience-weighted attraction, k-level reasoning,

and imitation, do not apply because these rules use the actions of the other players as

inputs (Björnerstedt & Weibull, 1993; Stahl & Wilson, 1995; Nagel, 1995; Ho et al., 1998;

Camerer & Ho, 1999; Costa-Gomes et al., 2001; Costa-Gomes & Crawford, 2006).2

Nevertheless our experiments show that learning ‘inside the box’ can and does take place.3

The learning process exhibits certain distinctive patterns that have been identified in

other settings. Two especially noteworthy features are the following:

Search volatility. A decrease in a player’s realized payoff triggers greater variance in his

choice of action next period, whereas an increase in his realized payoff results in

lower variance next period.

Trend-following. If a higher contribution leads to a higher payoff this period, the player

will tend to raise his contribution next period, whereas if a higher contribution leads

to a lower payoff this period, he will tend to reduce his contribution next period.

Similarly, if a lower contribution leads to a higher payoff the player will tend to

lower his contribution, whereas if a lower contribution leads to a lower payoff he

will tend to increase his contribution next period.

Learning rules with high and low search volatility have been proposed in a variety of set-

tings, including biology (Thuijsman et al., 1995), organizational learning (March, 1991),

1Note that subjects in that setting have only two strategies and were explicitly ‘fooled’ not to think
that they were playing a game. The observed learning in this setting follows reinforcement.

2Indeed most impulse-based learning models (see Crawford, 2013) except for reinforcement learning
(Erev & Roth, 1998) are thus excluded. We also note that social preferences cannot enter into subjects’
behavior because they cannot compare their own payoffs with others’ payoffs. Thus the black box
environment eliminates some of the explanations that have been advanced for behavior in public goods
games (Fehr & Schmidt, 1999; Fehr & Gachter, 2000, 2002; Fehr & Camerer, 2007).

3Oechssler & Schipper (2003) show that, in the context of 2x2 games, players can learn to identify the
other player’s payoff structure on the basis of their own payoffs and information about other’s actions. In
our set-up players may or may not learn the game, but even without information about the relationship
between their own and others’ payoffs they do learn to play Nash equilibrium. See Erev & Haruvy (2013)
for a recent survey of equilibrium learning.
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computer science (Eiben & Schippers, 1998), and psychology (Coates, 2012). (In com-

puter science and organization theory this type of learning is known as ‘exploration versus

exploitation’, ‘win-stay-lose-shift’ or ‘fast and slow’ learning.) Search volatility is also a

crucial feature of rules that have recently been proposed in the theoretical literature;

in particular there is a family of such rules that lead to Nash equilibrium in generic

n-person games (Foster & Young, 2006; Germano & Lugosi, 2007; Marden et al., 2009;

Young, 2009; Pradelski & Young, 2012). To our knowledge, despite systematic differences

in behavior following positive and negative feedback being noted (e.g. Ding & Nicklisch,

2013), our model is the first experimental text of an explicit learning model with such

this feature.

Trend-following also has antecedents in the experimental literature, where it is sometimes

called directional learning (Selten & Stoecker, 1986; Selten & Buchta, 1998).4 Directional

learning describes behavioral dynamics based on local adjustments of strategy and aspi-

ration (Sauermann & Selten, 1962; Cross, 1983). The underlying behavioral components

are illustrated in a bargaining game: if a higher demand results in a higher realized payoff

the agent increases his demand, whereas a decrease in realized payoff leads to a demand

decrease (Tietz & Weber, 1972; Roth & Erev, 1995). Other experiments such as Erev &

Roth (1998) and Erev & Rapoport (1998) corroborate these bargaining findings and Nash

equilibrium is learned based on reinforcement dynamics in various settings. Recent the-

oretical generalization’s of directional learning when strategies are unidimensional have

been proposed by Laslier & Walliser (2011). Bayer et al. (2013) recover a directional

learning model in their learning condition even if the structure of the game potentially

changes.

In this paper we show that these two patterns help explain the behavior of subjects who

are learning in a ‘black box’ environment. Moreover, despite the lack of information

and the simplicity of the adjustment rules, the behavior of the group approaches Nash

equilibrium and does so at approximately the same rate as in the situation where subjects

have full information (Burton-Chellew & West, 2012). As we shall see, this is true

both when free riding is the dominant strategy, and also when full contribution is the

dominant strategy. We conclude that even when subjects have virtually no information

about the game, learning follows certain distinctive patterns that have been documented

in a wide variety of learning environments. In public goods games this behavior leads

to Nash equilibrium at a rate that is very similar to learning under full information.

Moreover, search volatility turns out to be a robust behavioral component even when

more information becomes available and when players gain experience.

4See Harstad & Selten (2013) for a recent survey of these models.
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The paper is structured as follows. In section 2 we describe the experimental set-up in

detail. In section 3 we present the empirical findings together with statistical tests of

significance. We conclude in section 4. An appendix contains experimental instructions

and supplementary regression tables.

2 Experimental set-up

Participants were recruited from a subject pool that had not previously been involved

in public goods experiments.5 The subjects were not limited to university students,

but included different age groups with diverse educational backgrounds.6 Each subject

played four separate contribution games, where each game was repeated twenty times with

randomly allocated subgroups. The twenty-fold repetition of a given game will be called

a ‘phase’ of the experiment. This yields a total of 236 games and 18,880 observations.

During sixteen separate sessions in groups of sixteen or twelve, subjects play the four

phases in a row.

Games differ with respect to two rates of return (‘low’ and ‘high’) such that either ‘free-

riding’ or ‘fully contributing’ is the dominant strategy. Treatments differ with respect to

the information that is revealed to the agents (‘black box’, ‘standard’ and ‘enhanced’).

Every player plays both black box games, and either the two standard or enhanced

information games. Either two black box games are played first, or two games of one

of the other two treatments.7 The two first phases constitute stage one, the second two

constitute stage two. Each possible information order is played in four separate sessions,

each of which with a different order of the two rates of return.8

In this section, we shall describe the underlying stage game, the structure of each repeated

game, and the different information treatments.

5The subjects were recruited through ORSEE (Online Recruiting System for Economic Experiments;
Greiner, 2004) with this request specifically made.

6The experiment was programmed and conducted with the software z-Tree (Fischbacher, 2007). All
experiments were conducted at the Centre for Experimental Social Sciences (CESS) at Nuffield College,
University of Oxford.

7Of the 18,880 observations, 9,440 are black box, 4,640 are standard, and 4,800 are enhanced.
8This yields sixteen different scenarios each played in one of the sessions given by the possible orders

and permutations; four (combinations) times four (orders) equals sixteen (sessions).

5



2.1 Linear public goods game

Consider the following linear public goods game. Every player i in population N =

{1, 2, ..., n} makes a nonnegative, real-numbered contribution, ai, from a finite budget

B ∈ N+. Given a resulting vector of all players’ contributions, a = {a1, a2, ..., an}, for

some rate of return, e ≥ 1, the public good is provided, R(a) = e
∑

i∈N ai, and split

equally amongst the players.9 Given others’ contributions a−i, player i’s contribution ai

therefore results in a payoff of

φi =
e

n

∑
i∈N

ai + (B − ai),

where e
n

is the marginal rate of return. Write φ for the payoff vector {φ1, ..., φn}.

Nash equilibria. Depending on whether the rate of return is low (e < n) or high

(e > n), individual contribution of either zero (free-riding) or B (fully contributing) is

the strictly dominant strategy for all players; the respective Nash equilibrium results in

either nonprovision or full provision of the public good.10

2.2 Repeated game

In any session, the same population S (with |S| = 12 or 16) plays four phases. Each

phase is a twenty-times repeated, symmetric public goods game. In each period t of each

game, players in S are randomly matched to groups of four to play the stage game.11 The

budget every period is a new B = 40 to every player of which he can invest any amount,

but he cannot invest money carried over from previous rounds. The rate of return is

either low (e = 1.6) or high (e = 6.4) throughout the game.12 Write N t
4 for any of the

four-player groups matched at time t, and ρt4 for the partition of S into such groups.

Given at, ρt4, N
t
4, in any period t such that i ∈ N t

4 ∈ ρt4, each i receives

φi =
∑

t=1,...,20

φt
i =

∑
t=1,...,20

[e/4
∑
j∈Nt

4

atj + (40− ati)].

For every i, φi represents a real monetary value that is paid after the game.13

9If e < 1, R(a) is a public bad.
10When e = n, any contribution is a best reply to any level of contribution by the others, hence any

level of provision is supported by at least one pure-strategy Nash equilibrium.
11This follows the random ‘stranger’ rematching of Andreoni (1988).
12The Nash equilibrium payoffs of the stage games are 40 when e = 1.6, and 256 when e = 6.4.
13Hundred coins are worth £0.15 to pay £19.2 maximal individual earnings from the whole experiment.
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2.3 Information treatments

Before the first game begins, each player is told that two separate experiments will be

played. (From the analyst’s point of view the experiment consists of both of these taken

together.) At no point before, during, or in between the separate phases of the exper-

iment are players allowed to communicate. Depending on which treatment is played,

the following information is revealed at the start of each stage when a new treatment

begins.

All treatments. Two separate twenty-times repeated stage games are played. In each,

the underlying stage game is unchanged for 20 periods. Each player receives 40

monetary units each period of which he can invest any amount. Moreover, after

investments are made, each player gets a nonnegative return each period which, at

the end of each game, he receives together with his uninvested money according to

a known exchange rate.

Black box. No information about the structure of the game, or about other players’

actions or payoffs is revealed. Throughout the game players only know their own

contribution and payoffs.

Standard. The rules of the game are revealed including production of the public good,

rate of return, and how groups in the session form to play each stage game. In

addition, at the end of each period, players receive a summary of the relevant

contributions in their previous-period group; without knowing who these players

are and what payoffs they receive.14

Enhanced. In addition to the information available in the standard treatment, players

learn about the other group members’ previous-period payoffs.

Our main treatment is black box. Indeed, all our results concerning the learning rules

are based on black box data from sessions when black box is played first, in which case

subjects really have no knowledge of the structure of the game. For this reason, we

also required the recruiting system (ORSEE) to select only ‘first timers’ in public-goods

experiments. (See Appendix A for full black box instructions and Appendix B for the

output screens displayed during the experiment for each treatment.)

14This follows the standard information treatment design as in Fehr & Gachter (2002) and random
‘stranger’ rematching of subjects as introduced by Andreoni (1988).
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3 Findings

First, we analyze the black box data when players have no prior experience playing

public goods games in our experiments (or in other prior experiments). In this ‘black

box’ treatment, subjects have no knowledge of the structure of the game and receive no

information about others’ actions or payoffs.

3.1 Black box

In this section, we analyze the black box treatments when played before the standard or

enhanced treatments. Subjects were chosen only if they had not previously participated

in any public goods related experiment prior to ours.15 There were eight such sessions and

4,960 observations. By choosing these sessions, we ensure that players not only have no

explicit knowledge of the game structure and no information about others, but also have

no “experience” of related laboratory experiments that they could use to make structural

inferences. Unless stated otherwise, “significance” refers to a 95% confidence interval (5%

significance) when rejecting the null and to a 90% confidence interval (10% significance)

when the null cannot be rejected.

3.1.1 Contributions

For both rates of return independent of whether played first or second (phase one or

two), the mean initial contribution lies between one third and half the budget. The

mean is 15.3 in the games with e = 1.6, and 13.9 in the games with e = 6.4. Using

period-specific Mann-Whitney tests, we cannot reject the null of equal contributions for

games with different rates of return and for phase one versus phase two, that is, similar

observations are made in all games (with different rates of return) played in all initial

black box treatment games. This is evidence of “restart effects” (observed throughout

the literature).16 The period-two adjustments to the initial contribution have means close

to zero.17 Notably, a large part of these contributions lie at 0, 10, 20, 30, 40, with several

contributions made also in the range from 1 to 9; contributions at other numerical values

are rare.18 Using period-specific Mann-Whitney tests, we cannot reject the null of equal

contributions for different rates of return for periods 1 through to period 3.

15We used ORSEE to recruit our subjects with this ‘first timer’ characteristic. In Section 4, we will
test for experience and information effects by comparison with the rest of the data.

16See Andreoni, 1988; Croson, 1996; Cookson, 2000; Camerer, 2003.
17Means are 0.4 when e = 1.6 and 1.6 when e = 6.4.
18As is usually the case; see Camerer, 2003.
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Figure 1: Initial contributions (phases 1,2).
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Initial contributions often lie at 0, 10, 20, 30, 40, with several contributions made also
in the range from 1 to 9; contributions at other numerical values are rare.

(Figure 1 illustrates. See Appendix C, tables 4 and 5 for details.)

In the early periods of black box treatments, this is the behavior one would expect and

it is consistent with hundreds of previous experiments on public goods.19 Since players

have no knowledge of the differences in the game structures, they initially make ran-

dom contributions and play different games in much the same way. Note that players

initially contribute less than half of their budget, another observation consistent with

previous experimental results. A possible explanation for this is ambiguity aversion (Ep-

stein, 1999).20 At the beginning of the game, players cannot judge their initial payoffs

to be particularly “good” or “bad”, and therefore have no comparison concerning the

performance (“success” vs. “failure”) of different strategies. One would consequently

not expect an obvious direction for the initial-period adjustments, and indeed they are

similarly random until period 3 for the different rates of return.

19As surveyed, for example, in Chaudhuri, 2011.
20In Fehr & Schmidt, 1999, for example, mean contributions are ca. 40 percent of the budget; this

would mean ca. 16 in our experiment.
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Figure 2: Mean black box play (phases 1,2).
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Contributions deteriorate in the free-riding game. This trend is accentuated compared to
the full-contribution games which display a weak positive trend.

(Figure 2 illustrates.)

If players were not to learn at all, one would expect similar behavior throughout the

games. Using period-specific Mann-Whitney tests, however, we reject the null of equal

contributions for different rates of return in all periods after period 3. Moreover, play

evolves following distinctly different patterns: the contributions towards the end of the

game are closer to the respective stage game Nash equilibrium.21 Simple linear regressions

of contributions on a time trend (controlling for phase and group) reveal a trend of -0.6

when e = 1.6 (significant at 1%), and of +0.1 when e = 6.4 (significant at 10%). Note the

trend is accentuated in the games with e = 1.6.22 When e = 6.4, the mean contribution

never exceeds twenty and thus remains more than “halfway” from the Nash contribution.

Again, players’ ambiguity aversion may explain this phenomenon.23

21Means are 5.7 when e = 1.6 and 18.5 when e = 6.4.
22This pattern is consistent with previous experiments as, for example, noted in Ledyard, 1995. Note

our contributions decline more sharply than in Bayer et al. (2013), possibly indicating a “within-game
restart effect” in their experiments since players are lead to believe that underlying stage games are
changing.

23A contribution decrease represents less ambiguity and is, ceteris paribus, preferred by ambiguity-
averse agents, a contribution increase results in more ambiguity (Schmeidler, 1989).
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Figure 3: Final contributions.
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Final contributions amass close to zero in the free-riding game, and split between contri-
butions close to zero and 40 for the full-contribution game.

(Figure 3 illustrates. See Appendix C, table 6 for details.)

To summarize our observations regarding aggregate contributions in free-riding games,

we reconfirm the standard findings from the literature regarding initial contributions,

restart effects and contribution deterioration. Moreover, we note that in games where

full contribution is a Nash equilibrium, the observed trends to Nash equilibrium are

substantially weaker. Higher contributions seem harder to learn.

3.1.2 Difference in variation

Adjustment. The adjustment of a player i in period t is at+1
i − ati.

Success versus failure. A player i experiences success in period t + 1 if his realized

payoff does not go down (φt+1
i ≥ φt

i); otherwise he experiences failure.

Based on a Levene’s test (robust variance), the hypothesis of equal variances of adjust-

ments following success versus failure is rejected with 99% confidence.24 Furthermore,

we regress absolute adjustments on success versus failure controlling for phase, period,

individual, group, and two lags of contributions and payoffs. We obtain a significantly

(with 99% confidence) smaller coefficient of adjustment following success (by -1.2) than

after failure. The phase dummies are not significant. None of the period dummies is

significant after period 3. The two previous contributions are significant. The previous-

period payoffs are significant, those lagged two periods are not significant. We conclude

that players’ adjustments after successful contributions have a smaller variation than ad-

justments after unsuccessful contributions. As discussed in sections 1 and 2 of this paper,

24The robust variance test is not rejected dependent on whether e = 1.6 (mean -0.5) or 6.4 (0.2).
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Table 1: Adjustments after success and failure (phases 1,2).

statistic success failure

variance 123.9 188.5
mean +0.8 -1.2

SEARCH: the variance after success is lower than after failure; the average adjustments
are close to zero.

the phenomenon of “different adjustments following success versus failure” is a feature of

“search” in several recent learning models.25 Subsequently, we shall refer to this feature

as SEARCH.

(Table 1 summarizes. See also Appendix C, table 7 for details.)

3.1.3 Directional learning

Our games have the following structure, of which subjects in the black box are unaware.

First, despite knowing that they can make any contribution in the range from 0 to 40,

subjects do not know that the Nash equilibrium lies at either end. Second, an individual’s

payoff rises with the contributions of the other players but may rise or fall with his own

adjustment depending on the game’s underlying rate of return. Importantly, in varying

his own contribution, the individual agent is unable to distinguish between a self-induced

success versus failure, and one that is caused by others: in the interplay with others,

incremental adjustments in either direction may lead to higher or lower payoffs.26

The structure of the action space calls for a directional learning model (Selten & Stoecker,

1986; Selten & Buchta, 1998) based on success-versus-failure stimuli. Given period t, a

player i may increase or decrease his contribution relative to his contribution in the

previous period. As a result, he experiences either success or failure. Table 2 shows

the model of directional adjustments that we propose and shall subsequently refer to as

TREND.

To test the TREND hypothesis, given two subsequent payoffs, φt+1
i and φt

i, we regress

adjustments relative to two lags of contributions (ct+2
i − cti) and adjustments relative to

25See Young, 2009; Marden et al., 2011; Pradelski & Young, 2012.
26The effects that a player’s own actions and those of others have on one’s own payoff are important

features in Young, 2009; Marden et al., 2011; Pradelski & Young, 2012.
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Table 2: TREND hypothesis.

given success in period t given failure in period t
Player i in period t+ 1 (φt

i ≥ φt−1
i ) (φt

i < φt−1
i )

given an increase in period t increases contribution decreases contribution
(ati > at−1i ) with respect to period t− 1 with respect to period t

given a decrease in period t decreases contribution increases contribution
(ati < at−1i ) with respect to period t− 1 with respect to period t

previous contributions (ct+2
i − ct−1i ) separately.

After success (φt+1
i ≥ φt

i), we obtain significant coefficients in line with the TREND

hypothesis for adjustments relative to two lags of contributions (ct+2
i − cti): we observe a

significant increase with respect to contributions two periods ago (+7.1; significant at 1%)

following an increase; and we observe a significant decrease with respect to contributions

two periods ago (-12.5; significant at 1%) following a decrease. The previous contribution

has a negative effect (-0.2; significant at 1%). All other coefficients are insignificant as in

the failure case. Trend following after success therefore summarizes as follows:

• If an increase is a success in the current period, the average next-period adjustment

relative to the previous period –net of negative level effects– is another increase.

Similarly, if a decrease is a success in the current period, the average next-period

adjustment relative to the previous period –net of negative level effects– is another

decrease.

After failure (φt+1
i < φt

i), we obtain significant coefficients in line with the TREND

hypothesis for adjustments relative to previous contributions (ct+1
i − cti): we observe

significant coefficients for decrease with respect to the previous-period contribution (-3.4;

significant at 1%) following an increase; and we observe significant increase with respect

to the previous-period contribution (+2.2; significant at 1%) following a decrease. None

of the phase or group dummies is significant. None of the period dummies after period

4 is significant. Past payoffs have significant but marginal (less than 0.05) effects. The

previous contribution has a negative effect (-0.6; significant at 1%). Trend reversal after

failure therefore summarizes as follows:

• If an increase is a failure in the current period, the average next-period adjustment

relative to the current period –net of negative level effects– is a decrease instead.
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Figure 4: TREND without level effect.

TREND without level effects: success versus failure leaves an intermediate range over
which predictions are ambiguous.

Similarly, if a decrease is a failure in the current period, the average next-period

adjustment relative to the current period –net of negative level effects– is an increase

instead.

Based on TREND, given two previous contributions and a success versus failure stimulus,

the location of the expected next-period contribution is known relative to the relevant

previous contribution, but, given the same two previous contributions, the relative loca-

tion of the contribution depending on success versus failure is unknown. This is because

TREND implies adjustment tendencies only with respect to the current period after fail-

ure, and with respects to the previous period after success. It is unclear where, given

both current and previous contributions, the next-period contribution will lie after either

success or failure is experienced.

(Figure 4 illustrates. See also Appendix C, table 8 for details.)

We shall illustrate this point with an example as illustrated in Figure 4, if an agent

contributes 10 in one period and 20 in the next, on average he contributes at least

10 if 20 was a success, and less than 20 if 20 was a failure. The following (stronger)

14



Figure 5: Average adjustment hypothesis (Bayer et al., 2013).

The average adjustment hypothesis ignores level effects and places further structure on
TREND, making predictions over the intermediate range where TREND remained am-
biguous.

hypothesis has been considered (Bayer et al., 2013): given two previous contributions,

the next contribution is, in expectation, closer to the contribution which resulted in a

higher payoff. If the stimulus is trend-neutral, the expectation lies exactly at the average.

As illustrated in Figure 5, if an agent contributes 10 in one period and 20 in the next,

on average he contributes at least 15 if 20 was a success, and less than 15 if 20 was a

failure.

(Figure 5 illustrates. See Appendix C, table 9 for details.)

We regress contribution adjustments on the four trends controlling for phase, period,

individual, group, two payoff lags, previous contribution. This yields the following ef-

fects:

given ati and at+1
i of some individual i, the net average adjustments, controlling for level

effects, are

15



E(at+2
i ; at+1

i , ati)−
ati+at−1

i

2
= φt

i ≥ φt−1
i φt

i < φt−1
i

ati > at−1i +3.6∗∗ +0.3◦◦

ati < at−1i −6.5∗∗ −1.9∗◦

∗∗: significant at 1%, consistent with the average hypothesis.
◦◦: insignificant, inconsistent with the average hypothesis.
∗◦: significant at 1%, inconsistent with the average hypothesis.

Note that the adjustments following success point in the “right” direction (following

success) and are significant. The adjustments following failure point in the “wrong”

direction (following failure) and are significant in case of decrease. As before, the previous

contribution has a significant negative effect of -0.4 (with 99% confidence). Previous

profits have a marginal but significant effect. If we drop the two payoff lags and the

previous contribution from the regression (since they are not included in the average

adjustment model), we improve in terms of the model’s predictions but not regarding all

aspects:

given ati and at+1
i of some individual i, the gross average adjustments, not controlling

for level effects, are

E(at+2
i ; at+1

i , ati)−
ati+at−1

i

2
= φt

i ≥ φt−1
i φt

i < φt−1
i

ati > at−1i +1.4
∗ −3.3∗∗

ati < at−1i −5.4∗∗ −0.9◦◦

∗
: significant at 5%, consistent with the average hypothesis.
∗∗: significant at 1%, consistent with the average hypothesis.
◦◦: insignificant, inconsistent with the average hypothesis.

We conclude that there is strong evidence for TREND including negative previous-period
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contribution level effects. Ceteris paribus, a higher previous-period contribution leads to

a negative adjustment. Depending on trend stimulus (success or failure), success trends

are followed with respect to the contribution two periods ago, failure trends are reversed

with respect to the previous contribution. The size of the adjustments relative to the

previous two-period average is ambiguous and depends on the level of the previous-period

contribution as well as the spread of the two previous contributions. A learning model

assuming average adjustments without level effects gives consistent predictions in the

success and increase directions; given a decrease-failure, however, it may lead to wrong

predictions. It is worth noting that in the context where the average adjustment rule

was originally formulated (Bayer et al., 2013), the problematic decrease-failure trends

are relatively rare because only games where free-riding is Nash are played. The most

common failure in those games comes from contributing more, not less.27

3.2 Experience effects

In this section, we analyze the whole black box data including sixteen sessions and 9,440

observations. In 4,480 observations, individuals have “experience” in the sense that they

play the black box games in the second stage having previously played a non-black box

treatment in the first stage where they received information about the game structure in

the form of detailed game instructions and about other players’ past actions (and payoffs).

Even though subjects are explicitly told that a separate experiment is started after the

first stage of the experiment, there is evidence that experience matters. This can be

explained by subjects linking the black box game to the previous voluntary contributions

games which seems reasonable given that payoffs will be similar and the action space is

the same.

(Figure 6 illustrates. See Appendix C, table 10 for details.)

First, we test for distributional differences in contributions using period-specific Mann-

Whitney tests for the two rates of return separately.28 The following observations are

made. In the initial period, restart effects are noted as previously. For both rates of return

separately, the null hypothesis of equal contributions dependent on experience versus no

experience cannot be rejected. Furthermore, there is no significant difference in between

the two rates of return which is natural since players have no basis to distinguish between

27Conversely, in the games where fully contributing is Nash, decreases are the more common failures.
28Appendix C also contains regressions that cluster on individuals for the initial period and all other

periods separately. The basic message being that there are significant differences if e = 6.4 but no
significant differences in the initial periods or if e = 1.6
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Figure 6: Mean black box play (phases 1,2 versus 3,4).
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Experience plays no visible role in the free-riding games. Experience has a positive effect
in the full-contribution games.

them.29 If e = 6.4, the null hypothesis of equal contributions dependent on experience

versus no experience can be rejected with 90% confidence after period 5 except for periods

16 and 17. If e = 1.6, it cannot be rejected in any period.

Second, we compare the linear time trends of contributions (Appendix C, table 11 contains

the details). Simple linear regressions controlling for phase and group reveal a similar

trend as before if e = 1.6 (-0.5; significant at 1%) but a stronger drift e = 6.4 (+0.3;

significant at 1%). Previously the respective trends were -0.6 (99%) and +0.1 (90%).

Indeed, the time trends are not significant from each other if e = 1.6, but the time trend

is significantly larger with experience than without experience if e = 6.4.30 Hence the

contributions in games with high rates of return improve faster with experience, but there

is no significant difference in play of games with low rates or return.

Finally, we perform the linear regressions with respect to SEARCH (absolute size of ad-

justments) and TREND (directional adjustments) from the previous section controlling

for the same effects and adding experience dummies for both rates of return. We obtain

29The initial contributions for both rates of return lie between 14 and 15 in all four phases of the
experiment.

30See Appendix C for the confidence intervals.
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the following results. The absolute size of adjustments (SEARCH) is smaller after the

initial two periods (all period dummies after period 3 are negative and significant), and

decreasing with experience. As before, the previous contribution is a positive and signif-

icant factor. Payoff level effects are significant but marginal. All other effects (including

phase dummies) are not significant. With respect to directional adjustments (TREND),

experience leads to larger contributions but the direction of adjustments is unchanged.

As before, the level of previous contributions is a negative and significant factor. All

period dummies after period 4 are negative. All other effects are as before.

We conclude that experience has two main effects. On the one hand, experience decreases

the SEARCH effect but preserves its sign. On the other hand, experience leads to larger

contributions over time when e = 6.4, but has no significant effect when e = 1.6. In

much a different setting, our findings complement the findings concerning experience

in games with low rates of return from Marwell & Ames (1981), Isaac et al. (1984),

Isaac et al. (1988) by analysis of games with high rates of return and by identifying a

common SEARCH feature when standard information is withheld. In fact, it turns out

that experience has a more significant effect in games where free-riding is not Nash (when

e = 6.4) in which case experienced players contribute more and learn Nash equilibrium

at a faster rate. A possible explanation for this is that experience reduces the agents’

perceived ambiguity of the game.

3.3 Comparison with information treatments

In this section, we shall investigate whether SEARCH and TREND are only features of

black box behavior or whether they persist in the standard and enhanced treatments,

that is, if players have explicit information about the structure of the game and others’

actions (and payoffs). We shall find that SEARCH is very robust and persists in all

treatments, while TREND is fairly robust but more sensitive to the treatment setting

and rate of return.

3.3.1 Distributional differences

Using period-specific Mann-Whitney tests we test for differences in contributions in the

three information treatments for both rates of return.31 It turns out that initial black box

contributions are significantly lower than non-black box contributions for both rates of

31This yields three tests for each period for both high (when e = 6.4) and low (when e = 1.6) rates of
return as summarized in Table 3.
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Table 3: Mann-Whitney tests of equal contributions.

comparison period

e = treatments 1 2 3 4 5 . . . 20

1.6 enhanced vs. standard = ∗∗ ∗∗ ∗∗ ∗∗ . . . ∗∗

black box vs. enhanced ∗∗ = ∗∗∗ ∗∗∗ ∗∗∗ . . . ∗∗∗

black box vs. standard ∗∗ ∗ = = = . . . =

6.4 enhanced vs. standard = = ∗∗ ∗∗ ∗∗∗ . . . ∗∗∗

black box vs. enhanced ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ . . . ∗∗∗

black box vs. standard ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ . . . ∗∗∗

Significance: ∗: 10%; ∗∗: 5%; ∗∗∗: 1%; =: not significant.

return. There are no differences in initial contributions between standard and enhanced

treatments but significant differences with the black box treatment.32 After period two,

all treatments are significantly different from each other in all periods except standard

and black box play when e = 1.6 which are not significantly different in any period.

When e = 6.4, standard treatment contributions significantly exceed enhanced treatment

contributions which exceed black box contributions. When e = 1.6, standard and black

box contributions are not significantly different from each other but exceed enhanced

treatment contributions. In the final period, of all three treatments, enhanced information

is closest to Nash equilibrium when e = 1.6, while standard and black box are closer to

Nash when e = 6.4.

(Table 3 and Figures 7 and 8 illustrate.)

3.3.2 SEARCH

Testing for SEARCH, we perform tests for each rate of return separately, clustering on

individuals and regressing absolute adjustments on black box, standard and enhanced

information effects. We make the following observations. First, (more) information leads

to less variation in adjustments in between time periods: for both rates of return, the

standard and enhanced treatment dummies are negative. If e = 1.6, the enhanced treat-

ment dummy is significantly more negative than the standard dummy. If e = 6.4, there

32Recall that initial black box contributions lie below 20 and show no differences for the two rates of
return (see section 3.1.1). Initial contributions are higher for both standard and enhanced treatments;
close to 20 when e = 1.6, and above 20 when e = 6.4.
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Figure 7: Mean play all treatments (black box, standard, enhanced).
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Figure 8: SEARCH and mean absolute adjustments (black box, standard, enhanced).
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is no significant difference. In all treatments and for both rates of return, success in the

previous period leads to less variation in adjustments between time periods than failure

in the previous period.

3.3.3 TREND

Testing for TREND, we perform tests for each rate of return separately (with individual

clustering). We regress one-period and two-period adjustments treatment fixed effects

and on TREND, controlling also for fixed effects from experience and of two lags of

contributions and payoffs. We know that, overall, enhanced information leads to play

over time that gets closer to the Nash equilibrium than black box and standard treatment

play in the games with e = 1.6, while standard information play gets closer to the Nash

equilibrium than enhanced and black box treatment play in the games with e = 6.4.

At the TREND level, we observe a violation of TREND in two cases: i. when a contri-

bution decrease leads to a lower payoff (down and failure) in games with e = 1.6, the

expected next-period contribution is nevertheless smaller in both standard and enhanced

treatments (down is not reversed), ii. when a contribution decrease leads to a higher

payoff (down and success) in games with e = 1.6, the expected next-period contribution

is nevertheless larger in the standard treatment (down is not followed). The remaining

TREND components are preserved in a weak sense (pointing in the right way) in both

the standard and enhanced treatments even if some TREND components are no longer

statistically significant.

The remaining differences concern the size of the fixed effects and effects of earlier period

contribution lags. First, contributions two periods ago now are also significant (previ-

ously only contributions in the previous period but not two periods ago were significant).

With 99% confidence, the level of contribution two periods ago has a negative effect on

the contribution adjustments relative to two periods ago and a positive effect on the con-

tribution adjustments relative to the previous period. The constant for both adjustments

relative to one and two periods ago is negative in games when e = 1.6 and positive when

e = 6.4. This suggests longer “memory” effects in the non-black box treatments. The

standard and enhanced information fixed effects in terms of adjustments of contributions

relative to two periods ago are negative and significant (at different levels of significance),

and positive but insignificant for adjustments relative to the previous period. Experience

has no significant effects.
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3.3.4 Summary

Comparing black box with standard and enhanced treatments at a purely distributional

level, we observe the following differences. Initial contributions are higher in both stan-

dard and enhanced treatments (and not different from each other), and this finding

includes the games with e = 1.6 where such contributions are worse replies in terms of

the game’s Nash equilibrium. After period two, there are significant differences between

all three treatments when e = 6.4. When e = 1.6, there are no differences between black

box and standard treatments, and enhanced treatment contributions are significantly

lower. In fact, enhancing the information relative to standard treatments leads to lower

contributions in all games; these are higher than black box contributions when e = 6.4

and lower than black box contributions when e = 1.6.33

Let us also briefly summarize our results regarding SEARCH and TREND. SEARCH is

robust in all treatments. More information reduces the size of this effect but preserves its

sign. TREND including level effects is robust in black box treatments with or without

experience. Inside the box, adjustments are made dependent on whether the previous

adjustment was successful or not. There is only partial evidence for TREND adjustments

in the non-black box data and further contribution lags are significant. TREND fails to

explain non-black box adjustments, and subjects’ behavior is likely to interact and depend

on other factors such as social preferences and social learning.

4 Conclusion

Much of the prior empirical work on learning in games has focussed on situations where

players have a substantial amount of information about the structure of the game, and

they can observe the behavior of others as learning proceeds. In this paper by contrast,

we have examined situations in which players have no information about the strategic

environment, and they must feel their way based solely on the pattern of realized payoffs.

We identified two key features of such completely uncoupled learning dynamics – search

volatility and directional adjustments, both of which have antecedents in the psychology

literature. Search volatility in particular has not been examined previously in the context

of experimental game theory and turns out to be very robust even when players gain

33Decreasing contributions due to more information have previously been observed (Huck et al., 2011).
Indeed, this may be explained by considerations of relative payoffs. In both games, independent of the
Nash equilibrium, those who contribute less are relatively better off. This generally aids learning in the
games with e = 1.6 but may lead to an adverse learning effect in the games with e = 6.4.
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experience and information. Whether this remains true for other classes of games is an

open question for future research.

When no information regarding other players’ actions and payoffs is available and individ-

uals are limited in their computational capacity and memory, individual learning amounts

to trial-and-error type behavior. Outside game theory, these rules have a long tradition

dating back to Thorndike (1898) and constitute the heart of experimental psychology of

animal behavior processes. In our black box treatment, we enforce completely uncoupled

behavior in the context of public goods games played in the economics laboratory. The

key components of individual adjustments that we identify depart from traditional eco-

nomic theory in a way not captured by existing models of bounded rationality linking

reinforcement learning, directional learning and search volatility models.
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For online publication: appendices

Appendix A: black box instructions

Participants received the following on-screen instructions (in z-Tree) at the start of the

Black Box game and had to click an on-screen button saying, “I confirm I understand

the instructions” before the game would begin:

Instructions

Welcome to the experiment. You have been given 40 virtual coins. Each ‘coin’ is worth

real money. You are going to make a decision regarding the investment of these ‘coins’.

This decision may increase or decrease the number of ‘coins’ you have. The more ‘coins’

you have at the end of the experiment, the more money you will receive at the end.

During the experiment we shall not speak of £Pounds or Pence but rather of “Coins”.

During the experiment your entire earnings will be calculated in Coins. At the end of

the experiment the total amount of Coins you have earned will be converted to Pence at

the following rate: 100 Coins = 15 Pence. In total, each person today will be given 3,200

coins (£4.80) with which to make decisions over 2 economic experiments and their final

totals, which may go up or down, will depend on these decisions.

The Decision

You can choose to keep your coins (in which case they will be ‘banked’ into your private

account, which you will receive at the end of the experiment), or you can choose to put

some or all of them into a ‘black box ’.

This ‘black box ’ performs a mathematical function that converts the number of coins

inputted into a number of coins to be outputted. The function contains a random com-

ponent, so if two people were to put the same amount of coins into the ‘black box ’, they

would not necessarily get the same output. The number outputted may be more or less

than the number you put in, but it will never be a negative number, so the lowest out-

come possible is to get 0 (zero) back. If you chose to input 0 (zero) coins, you may still

get some back from the box.

Any coins outputted will also be ‘banked’ and go into your private account. So, your

final income will be the initial 40 coins, minus any you put into the ‘black box ’, plus all

the coins you get back from the ‘black box ’.

You will play this game 20 times. Each time you will be given a new set of 40 coins

to use. Each game is separate but the ‘black box ’ remains the same. This means you
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cannot play with money gained from previous turns, and the maximum you can ever put

into the ‘black box ’ will be 40 coins. And you will never run out of money to play with

as you get a new set of coins for each go. The mathematical function will not change

over time, so it is the same for all 20 turns. However as the function contains a random

component, the output is not guaranteed to stay the same if you put the same amount

in each time.

After you have finished your 20 turns, you will play one further series of 20 turns but

with a new, and potentially different ‘black box ’. The two boxes may or may not have

the same mathematical function as each other, but the functions will always contain a

random component, and the functions will always remain the same for the 20 turns.

You will be told when the 20 turns are finished and it is time to play with a new black

box.

If you are unsure of the rules please hold up your hand and a demonstrator will help

you.

I confirm I understand the instructions

Appendix B: on-screen output in each treatment

Supplementary Figures: the post-decision feedback information that participants re-

ceived: (a) in the black-box treatment; (b) the first feedback screen in both the standard

and the enhanced-information treatments; and (c) the second feedback screen, which

differed between the two treatments (not shown in black-box treatment). Dashed lines

border the information that was only shown in the enhanced-information treatment.
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Appendix C: regression outputs

Table 4: Section 3.1.1. Mann-Whitney tests for difference in contributions: period 1

Comparison # observations Test statistic (P-value)

1 if e = 1.6 124+124 -0.614 (0.5394)

1 if “phase”=1 124+124 -1.220 (0.2223)

We use black box data from phases 1 and 2. We test for differences in first-period
contributions under inexperienced black box play. We find no evidence for significant

differences depending on phase and rate of return.
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Table 5: Section 3.1.1. Mann-Whitney tests for difference in contributions: 1 if e = 1.6

Period # observations P-value (Significance)

1 124+124 -0.614 (0.5394)
2 124+124 -0.366 (0.7146)
3 124+124 0.099 (0.9213)
4 124+124 2.305∗∗ (0.0212)
5 124+124 3.300∗∗∗ (0.0010)
6 124+124 3.566∗∗∗ (0.0004)
7 124+124 3.369∗∗∗ (0.0008)
8 124+124 4.539∗∗∗ (<0.0001)
... ... ... ...
20 124+124 6.232∗∗∗ (<0.0001)

Significance: ∗: 10%; ∗∗: 5%; ∗∗∗: 1%.
We use black box data from phases 1 and 2. We test for differences in contributions

under inexperienced black box play depending on rate of return. We find evidence for
significant differences for all periods after three.

Table 6: Section 3.1.1. Time trends of contributions

e = 6.4 e = 1.6
coefficient (std. error) coefficient (std. error)

Period 0.0831∗ (0.0514) -0.5561∗∗∗ (0.0404)

1 if “phase”=1 4.6486∗∗∗ (0.5937) -0.2628 (0.4675)

1 if “group”=2 -1.3031 (0.8345) 0.2734 (0.6492)
1 if “group”=3 -1.4063∗ (0.8345) 0.0016 (0.6492)
1 if “group”=4 -1.6472∗ (0.8545) -0.4944 (0.6728)

Constant 15.8716∗∗∗ (0.8479) 16.1658∗∗∗ (0.6676)

Observations 2,480 0.0247
Adjusted R2 2,480 0.0697

Significance: ∗: 10%; ∗∗: 5%; ∗∗∗: 1%.
We use black box data from phases 1 and 2. We perform separate OLS regressions for

each rate of return of contributions on a constant and a time trend controlling for phase
and group effects.
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Table 7: Section 3.1.2. SEARCH: absolute adjustments following success and failure

Coefficient (std. error)

1 if “failure” 1.1914∗∗∗ (0.3768)

L.contribution 0.1948∗∗∗ (0.0129)
L2.contribution -0.0447∗∗∗ (0.0127)

L.payoff 0.0275∗∗∗ (0.0050)
L2.payoff 0.0094∗∗ (0.0050)

Individual fixed effects not listed

Periods 3, 13, 15, 16, 19 significant below 10%
others not significant

1 if “group”=1 -0.8012∗∗ (0.3908)
1 if “group”=2 -0.3644 (0.3919)
1 if “group”=3 -0.7581∗ (0.3922)

1 if “phase”=1 -0.0397 (0.2689)

Constant 3.3822∗∗ (1.6366)

Observations 4,464
Adjusted R2 0.2246

Significance: ∗: 10%; ∗∗: 5%; ∗∗∗: 1%.
We use black box data from phases 1 and 2. We perform an OLS regression of absolute

adjustments on a dummy separating success and failure including a constant and
controls for two lags of contributions and payoffs, as well as phase, group, period and

individual fixed effects.
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Table 8: Section 3.1.3. TREND: directional adjustments relative to previous periods

One-period adjustment: Two-period adjustment:
coefficient (std. error) coefficient (std. error)

1 if “up” & “success” 0.1447 (0.5989) 7.0971∗∗∗ (0.7012)
1 if “down” & “success” -0.4467 (0.5431) -12.5189∗∗∗ (0.6359)

1 if “up” & “failure” -3.3727∗∗∗ (0.5428) 3.9860∗∗∗ (0.6356)
1 if “down” & “failure” 2.2309∗∗∗ (0.5901) -6.0167∗∗∗ (0.6909)

L.contribution -0.5823∗∗∗ (0.0150) -0.2114∗∗∗ (0.0176)

L.payoff 0.0204∗∗∗ (0.0053) 0.0189∗∗∗ (0.0062)
L2.payoff 0.0284∗∗ (0.0053) -0.0028 (0.0062)

Individual fixed effects not listed not listed

Periods 1-6 not significant 3, 14, 16, 17 not significant
7-20 significant at >90% others significant below 10%

1 if “group”= 1 0.5948 (0.4578) 0.5320 (0.5360)
1 if “group”= 2 0.6235 (0.4590) 0.2241 (0.5374)
1 if “group”= 3 0.4216 (0.4595) 0.3352 (0.5381)

1 if “phase”= 1 0.5553 (0.3150) 0.2149 (0.3686)

Constant 1.3711∗ (1.9914) 2.1540 (2.2943)

Observations 4,464 4,464
Adjusted R2 0.3175 0.2071

Significance: ∗: 10%; ∗∗: 5%; ∗∗∗: 1%.
We use black box data from phases 1 and 2. We perform an OLS regression of

one-period and two-period adjustments on dummies for each directional success-failure
impulse including a constant and controls for two lags of payoffs, one contribution lag,

as well as phase, group, period and individual fixed effects.
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Table 9: Section 3.1.3. Bayer et al. (2013): average adjustment hypothesis

Coefficient (std. error)

1 if “up” & “success” 3.6210∗∗∗ (0.6086)
1 if “down” & “success” -6.4828∗∗∗ (0.5520)

1 if “up” & “failure” 0.3067 (0.5517)
1 if “down” & “failure” -1.8929∗∗∗ (0.5997)

L.contribution -0.3969∗∗∗ (0.0152)

L.payoff 0.0197∗∗∗ (0.0054)
L2.payoff 0.0128∗∗ (0.0054)

Individual fixed effects not listed

Periods 1-4 not significant
5-20 significant at 5%

1 if “group”=1 0.5635 (0.4652)
1 if “group”=2 0.4238 (0.4665)
1 if “group”=3 0.3784 (0.4670)

1 if “phase”=1 0.3851 (0.3201)

Constant 1.3711 (1.9914)

Observations 4,464
Adjusted R2 0.1522

Significance: ∗: 10%; ∗∗: 5%; ∗∗∗: 1%.
We use black box data from phases 1 and 2. We perform an OLS regression of

adjustments to the previous two-period average on a dummy separating success and
failure including a constant and controls for two lags of payoffs, one contribution lag, as

well as phase, group, period and individual fixed effects.
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Table 10: Section 3.2: Regressions on experience effects with individual-level clustering

Period e = 6.4 e = 1.6
coefficient (std. error) coefficient (std. error)

1 Experience dummy -1.2964 (1.8648) -1.5014 (1.7455)
Constant 15.2661∗∗∗ (1.2987) 13.9032∗∗∗ (1.2408)

2-20 Experience dummy 3.6732∗∗ (1.4738) -0.1232 (0.8782)
Constant 18.2920∗∗∗ (0.9647) 9.8901∗∗∗ (0.5651)

Significance: ∗: 10%; ∗∗: 5%; ∗∗∗: 1%.
We use black box data from phases 1-4. We perform separate OLS regressions with

individual subject-level clustering for each rate of return of contributions on a constant
and an experience dummies for the initial period and all subsequent periods.
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Table 11: Section 3.2. Mann-Whitney tests for difference in contributions: 1 if “expe-
rience” (“phase”>2)

Period # obs. e = 1.6 e = 6.4
(exp.+no exp.) test statistic (p-value) test statistic (p-value)

1 124+112 -0.851 (0.3949) 0.665 (0.5059)
2 124+112 0.069 (0.9448) -0.095 (0.9241)
3 124+112 0.960 (0.3373) -0.460 (0.6456)
4 124+112 0.041 (0.9671) -0.883 (0.3771)
5 124+112 0.685 (0.4933) -1.487 (0.1371)
6 124+112 0.659 (0.5098) -1.788∗ (0.0738)
7 124+112 -0.386 (0.6992) -1.957∗ (0.0504)
8 124+112 0.831 (0.4059) -2.680∗∗∗ (0.0074)
9 124+112 0.114 (0.9091) -1.812∗ (0.0701)
10 124+112 0.143 (0.8864) -2.049∗∗ (0.0405)
11 124+112 0.421 (0.6736) -2.203∗∗ (0.0276)
12 124+112 0.598 (0.5499) -3.068∗∗∗ (0.0022)
13 124+112 0.118 (0.9057) -2.696∗∗∗ (0.0070)
14 124+112 0.383 (0.7018) -2.833∗∗∗ (0.0046)
15 124+112 -0.791 (0.4289) -1.840∗ (0.0658)
16 124+112 0.416 (0.6774) -1.565 (0.1175)
17 124+112 0.364 (0.7160) -0.310 (0.7567)
18 124+112 0.730 (0.4652) -2.582∗∗∗ (0.0098)
19 124+112 0.442 (0.6585) -2.395∗∗ (0.0166)
20 124+112 0.306 (0.7597) -2.093∗∗ (0.0363)

Significance: ∗: 10%; ∗∗: 5%; ∗∗∗: 1%.
We use black box data from phases 1-4. We test for differences in contributions under
black box play depending on experience versus no experience for each rate of return

separately. We find evidence for significant differences for most periods after five when
e = 6.4 but no differences when e = 1.6.
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Table 12: Section 3.2: Time trends of contributions: experienced play

e = 6.4 e = 1.6
coefficient (std. error) coefficient (std. error)

Period 0.2781∗∗∗ (0.0576) -0.5287∗∗∗ (0.0424)

1 if “phase”= 3 3.0366∗∗∗ (0.6639) -2.1152∗∗∗ (0.4887)

1 if “group”= 1 0.3516 (0.8783) -1.5640∗∗ (0.6465)
1 if “group”= 3 -0.9063 (0.8783) -1.1984∗ (0.6465)
1 if “group”= 4 -2.3734∗∗ (1.0757) -0.9359 (0.7918)

Constant 16.6344∗∗∗ (0.9280) 17.6383∗∗∗ (0.6831)

Observations 2,240 2.240
Adjusted R2 0.0199 0.0749

Significance: ∗: 10%; ∗∗: 5%; ∗∗∗: 1%.
We use black box data from phases 1-4. We perform separate OLS regressions for each
rate of return of contributions on a constant and a time trend controlling for phase and

group effects.
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Table 13: Section 3.3.2. SEARCH: absolute adjustments following success and failure
(cluster on individuals)

e = 6.4 e = 1.6
coefficient (std. error) coefficient (std. error)

1 if “failure” in black box 1.8871∗∗∗ (0.2905) 3.3866∗∗∗ (0.2698)
1 if “failure” in standard 1.8905∗∗∗ (0.3980) 2.7538∗∗∗ (0.3256)
1 if “failure” in enhanced 1.3157∗∗∗ (0.4061) 1.6046∗∗∗ (0.3177)

1 if standard -2.1746∗∗∗ (0.5149) -1.0574∗∗∗ (0.4130)
1 if enhanced -1.5261∗∗∗ (0.5797) -2.1255∗∗∗ (0.4337)

Constant 6.2599∗∗∗ (0.3475) 5.3123∗∗∗ (0.2415)

Observations 8,968 8,968
Adjusted R2 0.0184 0.0437

Significance: ∗: 10%; ∗∗: 5%; ∗∗∗: 1%.
We use all the data. We perform a regression of absolute adjustments on a dummy

separating success and failure for each treatment and treatment dummies including a
constant with individual clusters for each individual and first two and second two

phases (accounting for experience) separately.
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Table 15: Section 3.3: Regressions on treatment effects with individual-level clustering

Period e = 6.4 e = 1.6
coefficient (std. error) coefficient (std. error)

1 Standard dummy 12.6973 (1.6095) 3.6790 (1.6285)
Enhanced dummy 10.9760 (1.6431) 3.5020 (1.5777)
Constant 13.1907 (0.8748) 15.8814 (0.9322)

2-20 Standard dummy 10.8300 (1.2291) -0.2050 (0.8458)
Enhanced dummy 4.5297 (1.3873) -3.1088 (0.8086)
Constant 20.0352 (0.7414) 9.8316 (0.4354)

We use all the data. We perform separate OLS regressions with individual subject-level
clustering for each rate of return of contributions on a constant and dummies for

standard and enhanced treatments for the initial period and all subsequent periods.
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