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Universitätsstraße 1, D-40225 Düsseldorf, Germany.

ismael@imartinez.eu

Last modification: December 9, 2014

Abstract

We develop a framework for the analysis of strategic interactions under the
constructive preference perspective à la Kahneman and Tversky formalized in the Type
Indeterminacy model. The players are modeled as systems subject to measurements and
characterized by quantum-like uncertain preferences. The decision nodes are modeled as,
possibly non-commuting, operators that measure preferences modulo strategic reasoning.
We define a Hilbert space of types spanned by the players’ eigentypes representing their
potential preferences in different situations. We focus on pure strategy TI games of
maximal information where all uncertainty stems from the intrinsic indeterminacy of
preferences. We show that preferences evolve in a non-deterministic manner with actions
along the play: they are endogenous to the interaction. We propose the notion of cashing-
on-the-go to compute a player’s utility, and the Type Indeterminate Nash Equilibrium as
a solution concept relying on best-replies at the level of the eigentypes. We illustrate an
example exhibiting the phenomenon of the manipulation of rivals’ preferences.

Keywords: Type Indeterminacy; Superposition of preferences; Actions as projections;
Hilbert space of types; Cashing-on-the-go; Type Indeterminate Nash Equilibrium.

JEL classification: C79,C72, D03, D89.
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Theories are nets cast to catch what we call ‘the world’:
to rationalize, to explain, and to master it.

We endeavour to make the mesh ever finer and finer.

Karl Popper, in The Logic of Scientific Discovery (1935).

1. Introduction

This paper belongs to a recent and rapidly growing literature where formal tools of Quantum
Mechanics are proposed to explain a variety of behavioral anomalies in social sciences and in
psychology. After the fundamental paper by Deutsch (1999), Busemeyer et al. (2006) present
a quantum dynamical model for decision-making processes. Busemeyer and Wang (2007) and
Busemeyer et al. (2008) show how processing information in a quantum fashion can overcome
limitations of Markov models. Franco (2009) explains the conjunction fallacy in terms of the
quantum interference effect. Danilov and Lambert-Mogiliansky (2008, 2010) define the basic
properties of non-classical systems applied to social sciences as a formulation for bounded
rationality, and extend Savage’s framework for decision-making under uncertainty to the non-
classical domain. Lambert-Mogiliansky et al. (2009) show how the mathematical formalism
of quantum mechanics can be fruitful in providing explanation to violations of transitivity in
decision-making, and of the Principle of Indifference of Irrelevant Alternatives.1

To many people it may appear unmotivated or artificial to turn to Quantum mechanics
when investigating human behavioral phenomena. However, the founders of Quantum
Mechanics, including Bohr (1991) and Heisenberg (2000), early recognized the similarities
between the two fields. In particular Bohr was influenced by the psychology and philosophy
of knowledge of Harald Höffding.

The similarity stems from the fact that in both fields the object of investigation cannot
(always) be separated from the process of investigation.2. Quantum Mechanics and in
particular its mathematical formalism was developped to respond to that epistemological
challenge (see the Introduction in Bitbol (2009) for an enlightening presentation).

The use of quantum formalism in game theory was initiated by Eisert et al. (1999),
who study how the extension of classical moves to quantum ones can affect the analysis of
a game.3 Another example is La Mura (2005) who investigates correlated equilibria with
quantum signals in classical games. Whether and when the use of quantum strategies (or
strategies using quantum signals) can bring something truly novel to Game Theory has been
discussed by Levine (2005), and Brandenburger (2010).

1See the books by Busemeyer and Bruza (2012), Khrennikov (2010), and Haven and Khrennikov (2012)
for monographic overviews of other achievements in quantum-like models for decision-making problems.

2In words of Bohr (1950, p. 52), “the impossibility of separating a behavior of atomic objects from the
interaction of these objects with the measuring instruments which serve to specify the conditions under which
the phenomena appears” represents an epistemological challenge shared with other disciplines. In psychology,
investigating a person’s emotional state affects the state of the person. In social sciences, revealing one’s
preferences in a choice can affect those preferences: “There is a growing body of evidence that supports
an alternative conception according to which preferences are often constructed –not merely revealed– in the
elicitation process. These constructions are contingent on the framing of the problem, the method of elicitation,
and the context of the choice” (Kahneman and Tversky, 2000, p.525)

3From a game-theoretical point of view the approach consists in changing the structure of the strategy
space, and thus the interest of the results lies in the appeal of these changes.
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Departing from the so-called quantum game approach, our approach is based on the idea
that players’ preferences (types), rather than the strategies they can choose, can feature
non-classical (quantum) properties. This idea is formalized in the Type Indeterminacy (TI)
model of decision-making introduced by Lambert-Mogiliansky et al. (2009), and Kvam et al.
(2014) provide empirical evidence supporting the TI model.

The concept of TI agents has been proposed as a theoretical framework for modelling
the Kahneman-Tversky man, i.e., the constructive preference perspective. The novelty of
our contribution is the proposal of encoding the preference relations over the set of possible
alternatives in a quantum-like fashion, i.e., orthonormal basis and Hermitian operators; and
not the game strategies as was done in previous studies.

This paper defines the basic elements of a theory of games with Type Indeterminate
players. We aim at a self-contained theoretical contribution to the fields of Behavioral
Economics and Game Theory proposing a tractable way of formalizing contextual types. We
keep the notation as close as possible to the standard one in Game Theory and we consider
only basic knowledge of vector spaces to be required for the reading. The rest of the paper
is structured as follows.

In Section 2, we first establish how a finite number of mutually exclusive preference
relations of a player (called eigentypes) in a given decision-situation can be modeled as an
orthogonal basis of a vector space: the Hilbert Space of Types. We introduce two postulates:
(i) the superposition of preferences is a valid type for a player, and (ii) how the choice of
actions affects these preferences. They are inspired by the Principle of Superposition and
the Postulate of Measurement and Observables in Quantum Mechanics, respectively. We
discuss the probabilistic interpretation of this framework and how the intrinsic uncertainty
in preferences relates to a model of non-commuting decision-situations.4

Section 3 introduces the basic elements for the study of TI games, the interactions between
TI players. The preferences of a TI player are represented as a unit length vector giving her
type as a linear combination of the elements of an orthonormal basis. When the player
faces several non-commuting decision-situations, the Hilbert Space of Types admits several
orthonormal bases of eigentypes related to each other by means of basis transformation
matrices. These are basic operations in any linear space. In this contribution, we focus only
on TI games with maximal information, so that the whole structure of eigentypes and their
relations is known.

The timing of a TI game defines a partially ordered set of decision-situations which may
imply a sequence of projections of the preferences along the path defined by the choice of
actions. This ‘evolution’ of the preferences is endogenous to the interaction between TI
players and is, in general, non-deterministic.

We discuss in Section 4 a definition for the Type Indeterminate Nash Equilibrium
(henceforth TINE). The TINE is proposed as a solution concept for TI games whose main
feature is that the choices of actions are best-responses at the level of the eigentypes, while
the overall utility for the player is computed at the level of the type. Generally, the type
is a linear superposition of several eigentypes, and the composition of this combination is
affected by the choice of actions. The idea of cashing-on-the-go is formalized in Assumptions

4Under some simplifying conditions, a TI model can yield the same predictions as a ‘classical’ Bayesian
framework.
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1 and 2. A TINE specifies the equilibrium strategy of each player as the collection of the
best-replies of all possible eigentypes of each player, as well as the expected resulting profile
of preferences of the players as a consequence of their plays along the game. A TINE implies
an expected utility level for all the players.

Section 5 provides an illustrative example. We consider a simple game with two players:
Alice and Bob. On the one hand, Alice behaves as a ‘standard’ player with stable preferences
since she faces only commuting decision-situations. On the other hand, Bob exhibits the
richness of a TI player. We show how Alice can determine the path of measurements of
Bob’s preferences with respect to two non-commuting decision-situations because she has the
opportunity to make the first move.

This example illustrates how to operate with the computational machinery in a Hilbert
Space of Types, and it emphasizes the notion of actions as projectors in the space of
preferences. We show how, in the TINE, Alice departs from the classical equilibrium play
because of the strategic value of manipulating Bob’s intrinsically indeterminate preferences.
We conclude in Section 6 with some final remarks and the discussion of several aspects for
further study.

2. The Hilbert Space of Types

In this paper an agent is characterized by her type. The type captures maximal information
about the agent’s preferences over the actions in interactive decision-situations. The Type
Indeterminacy approach defines an agent as a measurable system. Such a system is
characterized by its state: an element in a Hilbert space endowed with a set of operators
(measurements).5

2.1. A Type as a Superposition of Preferences:

Let O be the set of possible outcomes of an interaction between players. Then, a preference
relation of player i over the set of outcomes O is a binary relation denoted by %i (O × O).6

With %i being a preference relation, a utility function ui representing %i is a real-valued
function defined over O and satisfying ui(o1) ≥ ui(o2) ⇔ o1 %i o2 ∀ o1, o2 ∈ O.

Definition 2.1 (Orthonormal Basis of Preferences). Let Ri(O) = {%(n)
i }Nn=1 be a set of N

different preference relations over a set of outcomes O. We associate them in a bijection with

a set Θi = {θ(n)i }Nn=1 of orthonormal vectors in a Hilbert space.7 Then, Θi is an orthonormal
basis of a Hilbert space of dimension N .8

5For a more general discussion in terms of ortholattices, see Danilov and Lambert-Mogiliansky (2008). We
restrict ourselves to separable and finite-dimensional Hilbert spaces defined over the field of real numbers.

6Given two elements oj , ok ∈ O, oj ∼ ok denotes the indifference between both of them defined as oj %i ok
and ok %i oj , and oj ≻i ok denotes the strict preference for oj defined as oj %i ok and not ok %i oj .

7Orthonormality for the set of vectors requires 〈θn, θm〉 = δnm, where δnm is the Kroenecker symbol.
8As a simplifying remark, a preference relation defined over a set of M alternatives is, generally, composed

of a list of the order of CM,2 elements, the combinatorial number counting how many different pairs we can
form with the collection of M elements. Imagine a decision-maker i who can conceive only two monotonic ways
of ranking the elements: either in a ‘positive’ way M %

(+)
i . . . %

(+)
i 1 or in a ‘negative’ way 1 %

(−)
i . . . %

(−)
i M .

Then, the number of eigentypes required to describe our thought-agent is just N = 2, because there are
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From the bijection Ri(O) ↔ Θi, we equivalently refer to the preference relations of a
player and to the corresponding vectors of the orthonormal basis. We denote both of them
by Θi from now on to lighten the notation.

Definition 2.2 (Hilbert Space of Types). Let Θi be the set of orthonormal vectors in a
bijection with the set of preference relations of player i. Then, we denote by Ti the N -
dimensional Hilbert space of the types of player i, Ti ≡ Span(Θi), spanned by the orthonormal
basis of preference relations of player i.

Let a player i be described in terms of a Hilbert space of types Ti. Then, the type of
the player is fully characterized by a state-vector ti ∈ Ti such that ‖ti‖ = 1. A proper
representation of the state of a system is expressed in terms of vectors of the Hilbert space
with unit length as a requirement to be a probability framework. All the elements of the
form λti (with λ 6= 0) represent the same state of the system as ti, with ‖ti‖ = 1.

Postulate 1 (Superposition of Preferences). Let Ti be the Hilbert space of types spanned

by the possible preferences of the player, {θ(n)i }Nn=1. Then, every type of the form

ti =

N∑

n=1

cnθ
(n)
i , with cn ∈ R, and

N∑

n=1

c2n = 1, (1)

is also a unit length vector belonging to the same Hilbert space, ti ∈ Ti. Hence, any linear
combination of preferences (eigentypes) of a player is itself a proper type of the player.

Postulate 1 represents a major departure from the standard models in Decision and
Game Theory, where the linear combinations of types are understood as tools for computing
expected values when the other players lack information about the proper type of a player.
In a TI game, any superposition is a proper type itself, meaning that the type of an agent
is generally characterized by several mutually exclusive preference relations.9 For the rest of
this paper we use the term type of a player to denote a superposition of mutually exclusive
preference relations, which are referred to as the eigenpreferences or the eigentypes associated
to each decision-making node.

2.2. Strategic Reasoning, Actions and Projections:

The players’ choices of actions reflect the type of the players. Nevertheless, when observing
the choice of an action, we do not directly learn about the preferences: we observe the type
modulo strategic reasoning. Note that this is standard in game theory but it acquires a new
meaning in our context. The notion of intrinsic uncertainty entails that the players’ type
must be defined together with the decision-nodes to which they are confronted along the
game.10

only two possible preference relations even though each of this preference relations contains many pairwise
comparisons between the elements in the outcome set.

9At this initial stage of our research, we restrict the model to pure types. We do not consider mixed types
(represented by density matrices) that are expression of incomplete information. We deal exclusively with
situations of maximal information, where all the uncertainty is intrinsic.

10We return to the distinction between the observed choice and the underlying preferences in more detail
later.
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For any decision-situation d, player i has a set of possible actions Ai(d) among which she
can choose. Taking actions reveals information about the underlying preferences which are
present in the type of the player. It is therefore natural to understand the actions as related
to the outcomes of some sort of measurements of the type. Let the set Θi(d) contain those
preference relations (eigentypes) that can be actualized for player i in the state of preferences
(type) ti when facing a decision-situation d. Then, the choice of a particular action ai(d)
implies the transition of player i’s type from the initial state ti to an outcoming state t′i,
resulting from the measurement process.

We model this transition as a projection onto the subspace of types spanned by the
eigentypes supporting the chosen action,11 as a consequence of strategic reasoning. Formally,

Definition 2.3 (Action as Projector). Let ai(d) ∈ Ai(d) be a particular action that can be
chosen by player i at a decision-situation d, and let us assume that ai(d) is the preferred
action for a certain number M ≤ N of eigentypes {t1, . . . , tM} ∈ Θi(d). Then, the matrix

Pai(d) =
∑

t1,...,tM

tmtTm (2)

is the projector associated to the action ai(d).
12

Postulate 2 (Actions affect Preferences). For player i facing a given decision-situation d,
the chosen action ai(d) ∈ Ai(d) is the outcome of a measurement of her preferences. The
type of player i after making her decision in decision-situation d is:

t′i =
Pai(d)ti

‖Pai(d)ti‖
, (3)

where ti is the type before making the decision.

If one action is preferred only by one particular eigentype, the outcoming preferences of
the player only contain information of the eigentype that was actualized with the selected
action. Usually, an action may be preferred by several of the eigentypes belonging to the
initial superposion. The outcoming preferences of the player are then a superposition of all
those eigentypes. If one and the same action is preferred by all the eigentypes, the projector
is the identity matrix and the outcoming preferences of player i after taking such action, t′i,
are identical to the incoming preferences, ti.

The projections corresponding to the possible actions are orthogonal, and the Hilbert
space of types Ti can be decomposed as the direct sum of the subspaces associated to each of
the actions (this relates to spectral decomposition). We note that in case we were interested
in a single move corresponding to a single measurement, Postulate 2 would imply Bayesian
updating.

11This follows in the spirit of Lüders’ postulate, a generalization of the so-called von Neumann’s Postulate
for Pure States, which applies only for nondegenerate spectrums of observables. We consider our manuscript
presents a self-contained exposition of the use of the Hilbert spaces for describing the space of types in Game
Theory. Nevertheless, for the reader deeply interested in the interpretation of the measurement postulate in
Quantum Mechanics, we suggest the discussion in Elementary Analysis of the Measurement Process, Chapter 8
of The Logic of Quantum Mechanics by E.G. Beltrametti and G. Cassinelli (1981), as well as in A. Khrennikov,
von Neumann and Lüders’ Postulates and Quantum Information Theory. International Journal of Quantum
Information, 7, pp.1303-1311 (2009).

12The row-vector tTm is the transposition of tm ∈ Ti, and Pai(d) is a N ×N matrix.
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2.3. Probabilistic Content of a Type ti:

Let the state of preferences of player i be given by the type ti as a superposition of the
eigentypes in Θi(d), according to Postulate 1. Hence, strategic reasoning performed at the
level of the eigentypes determines which action each eigentype chooses if given a chance to act.
The actual observed action chosen by player i depends on the probability of actualization
of each eigentype, defined by her incoming type ti expressed in terms of the eigenvectors
corresponding to the actions available in decision-situation d.

Definition 2.4 (Probability of Actualization). Let ti be the preferences vector-state of player

i when facing a decision-situation d expressed as in Postulate 1, ti =
∑N

n=1 cnθ
(n)
i , with

cn ∈ R, and
∑N

n=1 c
2
n = 1; and let each of the possible actions ai(d) ∈ Ai(d) be associated

to an orthogonal projector Pai(d) reflecting the strategic reasoning. Then, a particular action
ai(d) will be selected by player i in decision-situation d with a probability given by

p
(
ai(d)

∣
∣ti

)
= ‖Pai(d)ti‖ =

M∑

m=1

c2m ≤ 1, (4)

with {cm}Mm=1 being the linear coefficients of those eigentypes {θ(m)
i }Mm=1 ⊆ Θi(d) for which

the action ai(d) is the preferred one.

2.4. Intrinsic Uncertainty of Preferences:

The Hilbert space of types provides a suitable framework for describing agents with intrinsic
uncertainty involved in the strategic interactions. We have to emphasize in this section that
by intrinsic uncertainty we mean a kind of uncertainty different from the uncertainty due
to incomplete information and different from the strategic uncertainty which arises when
considering mixed strategies (we deal only with pure strategies in this paper).

The realization of a particular action ai(d) when player i is making a decision in decision-
situation d will, in general, alter the preferences of the agent with respect to another decision-
situation d′, as a consequence of projecting the preferences ti of the player onto the subspace
of types supporting ai(d).

Let Θi(d) and Θi(d
′) be two sets of eigentypes representing the preference relations for

player i facing two different decision-situations d and d′, respectively. Let us assume for
clarity of the exposition that both sets contain the same number N of elements.13 In the
particular case that the realized action ai(d) is supported by only one eigentype θi, one may
think that this measurement process clears all the uncertainty about the preferences of the
agent, but this is not true when the decision-situations are incompatible or, equivalently, they
represent non-commuting measurements of the agent’s type (in plain words, if order effects
may arise).

The vectors θ′i ∈ Θi(d
′) then form an alternative orthonormal basis spanning Ti. The two

sets of vectors Θi(d) and Θi(d
′) are related by a basis transformation matrix, B

(d′, d)
i : Ti → Ti,

such that every vector represented in terms of coordinates with respect to one basis is uniquely
determined in terms of the other one. When the chosen action ai(d) is supported by only

13We shall deal with the problem of coarse measurement in the future.
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one eigentype, let us say θ
(m)
i (d), preferences of player i are fully determined with respect to

decision-situation d. But player i’s preferences when facing the next decision-situation d′ are

given by t′i = B
(d′, d)
i θ

(m)
i .

Thus, the vector t′i is, in general, a superposition of several eigentypes in Θi(d
′). When

the decision-situations d and d′ commute, the dimensionality of the type space is given by
the tensor product of the type space corresponding to each decision-situation. If this is the
case, the corresponding preferences are characterized by some independence and the analysis
can be fully classical.14

3. Basic Model for Games with Quantum-like Players

3.1. Games with Type Indeterminate Players

A TI game is an interacting situation where the agents are modeled as Type Indeterminate
players. A TI player i is a decision-maker facing a set of decision-situations Di, for which
player i’s preferences are actualized when the decision is made, interpreted as the outcome
of a measurement process, following Postulate 2. The following elements define a TI player:

1. The set Di of decision-situations in which player i has to take an action.
2. The collection Θi = {Θi(d)}d∈Di

of the sets Θi(d) of eigentypes giving the orthonormal
basis of eigenpreferences of player i in each decision-situation d ∈ Di, as in Definition
2.1.

3. The initial type of player i, t0i ∈ Ti, given as an element of the Hilbert space of types
spanned by the basis of the decision-situations corresponding to player i, Θi, as in
Definition 2.2.

A TI game is of maximal information if:

1. Every decision-situation of the game is identified and common knowledge.
2. Every orthonormal basis Θi(d) ∈ Θi associated to each decision-situation d ∈ Di is

common knowledge, as well as the relation among them, B
(d′; d)
i , for every pair d, d′ ∈ Di.

3. The initial type t0i of every player is known and common knowledge.

3.2. Basic model of a TI Game of Maximal Information:

A TI game is defined as Γ ≡
〈

I,D, T ,
〈
t0i , Ai, {ui(·)}d∈Di

〉

i∈I

〉

, where:

1. I is the set of TI players taking part in the game, each of them labeled by i ∈ I.
2. D = D(D,≤) is the partially ordered set of the decision-situations in the game. This

ordering comes from the time structure of the game, which equips the set D = ∪i∈IDi

with an ordering relation ≤ of temporal nature, and where Di is the set of decision-
situations in which player i has to participate.

3. T ≡
⊗

i∈I Ti is the Hilbert space of types describing the type for all the agents in the
game, with the set Θ = {Θi}i∈I of all the orthonormal basis associated to each player’s
eigenpreferences.

14Note that commuting decision situations do not preclude statistical correlations.
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4. t0i gives the initial type of each player i.
5. Ai = {Ai(d)}d∈Di

is the collection of sets specifying the available actions for each player
i, at each of her decision-situations.

6. ui(·) : Θi(d)×Ai(d)×A−i(d) → R is the payoff function for each player i.15

3.3. Paths of Projection:

The already defined partially ordered set D is obtained when considering the collection of
decision-situations of the game together with the ordering imposed by the timing of the game.
After understanding the actions as projections in the space of preferences (see Postulate 2),
we find a richer structure that can be defined over D. Given the specification of payoffs
{ui(·)}d∈Di

, we have interpreted the actions as the projections defined by the underlying
structure of preferences of the agents (see Definition 2.3), modulo strategic reasoning. Then,
we can associate each decision-situation node d ∈ D to a projector acting over the type of
the players who make their decision at the node d.

It follows directly that the partially ordered set of decision-situations D, together with
the specification of the preferred action for each of the available eigentypes, defines a partially
ordered set of projectors. In order not to overload the notation, we assume from now on that
D can refer also to the partially ordered set of projectors actualized along the path of the
game.

Therefore, for every TI game Γ as previously defined, we build the set Σ of all possible
paths of measurement along the game, from the root to each of the possible end nodes of the
game. For a given path σl ∈ Σ, of length L, we have a chain of projectors of length up to
L associated to the path along the game σl 7→ (Pai(d1), Pai(d2), . . . , Pai(dL)), with the index
d1 < d2 < . . . < dL giving the order in which the L decision-situations are reached when the
chain describes the play of the game.

3.4. On the Evolution of TI Preferences along the Game:

In standard Game Theory the preferences of a given agent are expressed in terms of a utility
function defined only over the different end nodes of the game. The purpose of this section is
to clarify certain aspects characterizing the theory of TI games which departs from both the
standard and the non-deterministic approaches to the definition of the utility which clearly
rely on the temporal invariance of the players’ preferences.

A main feature of the TI games is that the preferences are endogenous, they are a part
of the outcome of the game as a result of the choices that are made. We can say that the
preferences of the agents are initially the motivation for but finally the consequence of the
choices along the path of decisions. The chain of projections defined in the play of the game
determines the evolution of the players’ preferences. Within this framework, the possibility
for a strategic manipulation of the other players’ preferences arises as a new field of interaction
among the agents, as we will see in the example below.

15Just for notation, A−i(d) represents the actions available for all the players other than i that are involved
in the decision-situation d. Then, ui

[

θi(d), ai(d), a−i(d)
]

gives the utility associated to eigenpreferences θi(d)
when facing an interaction (ai, a−i) in the decision-situation d.

9
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The idea of preferences that evolve along with the taken action is not completely
new. It was initially discussed from the point of view of consistent planning and welfare
economics. See, e.g., the discussions by Schoeffler (1952) and Harsanyi (1953). Peleg and
Yaari (1973) defined the notion of equilibrium consumption plan for the optimal behavior
of agents immersed in multi-stage decision processes with certain preferences that evolve
deterministically.

This original approach referred to as ‘agent-form games’ consists in defining a sequence
of decision-makers, one for each decision-stage. A thorough discussion on credible equilibria
in agent-form games is given by Ferreira et al. (1995). This seminal discussion suggests
considering situations where a player is a group of individuals. [...] Such a player is to some
extent a decision-making unit, but it does not have a utility function of its own (Ferreira
et al., 1995).

At first glance, one might think that a TI game could be properly described also as an
agent-form game as in Ferreira et al. (1995) but, as we shall attempt to show below, a proper
TI game has a richer structure because it allows for the strategic manipulation of preferences.
Moreover, because preferences are represented in a Hilbert space of types, superposition of
a priori incompatible aspects (eigentypes) of the personality of the agent are by definition
valid types and they may interfere when computing the overall utility level of the agent who
is facing the different decision-situations.

4. The Type-Indeterminate Nash Equilibrium

We have defined how the preferences of the TI players evolve on the path of the game along
with the actions that are taken. Now, we propose a solution concept which is an extension of
the classical notion of Nash Equilibrium to games with TI players. The strategies are defined
at the level of the potential eigentypes and that is also where the equilibrium reasoning takes
place. The definition of utility integrates the consequences for the whole individual – beyond
its current potential incarnation (eigentype) – for the rest of the continuation game, including
how the choice of an action conditions the future preferences. For this, let us begin with the
novel concept of cashing-on-the-go.

4.1. Cashing-on-the-go:

In a Hilbert space of types, the superposition of eigentypes is itself a proper type of the agent
(Postulate 1). If the action taken by a player is the best-reply of several eigentypes, the
resulting superposition must be the basis for computing the utility level of the agent. Since
taking actions generally alters the type of the agent, we propose that in order to compute the
utility value of an action one should not wait until the last node of the game. This means
that we consider that the agent acts as if he was cashing in utility along with the game. He
may actually experience utility after taking the action. But we can also think that he ‘savors’
(experiences before the actual outcome).

There are several reasons for this. Most importantly, since the strategic reasoning is
performed by the eigentypes (who know their preferences as in a standard game) they have
to compute the utility associated with the different actions in order to identify the best-
reply. If they reasoned from the end node, their own preferences would play no role and
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the computation would be extremely complex as they would have to calculate at each step
the expected type of the agent arising from the possible actions to determine the end node
(expected) type. Moreover, such an approach would not allow for the central novel features
brought about by Type Indeterminacy.

To understand better, let us consider a path σl ∈ Σ along a TI game Γ, containing two
particular decision-situations d and d′ such that player i has to take an action for d some steps
before she takes an action for d′, following the timing of the game represented by the ordering
≤. According to Postulate 2, the state-vector ti giving player i’s preferences is affected by

the course of actions such that t
(before d)
i 6= t

(after d)
i 6= t

(before d′)
i 6= t

(after d′)
i holds.16

Thus, we propose to consider the idea of cashing-on-the-go, so that the payoffs, rewards
or punishments are received when the preferences are actualized through the actions which
are taken. Therefore, for each possible play of the game given as a path σl ∈ Σ, we can define
the total utility of the path as the collection of all the contributions of the payoffs received
when solving each decision-situation with respect to the preferences governing the affinities
of the player in each step.

In plain words, we model the reader of this paper enjoying the reading at present time,
as well as enjoying past readings in the past (now you only enjoy the memory of them) and
future readings in the future. This is opposed to the usual convention with all enjoyment
being at the end of the game of an agent’s life when final preferences of the player, in general,
do not coincide with the preferences motivating each particular choice along the path of life.
Experience conditions and modifies preferences, and the TI framework mirrors and formalizes
this effect.

4.2. Solution Concept in a TI Game of Maximal Information:

The optimal play in a TI game arises from the strategic reasoning at the level of the eigentypes.
This implies the strategies are defined such that one action is selected by each eigentype of
every player.17 We propose the notion of Type Indeterminate Nash Equilibrium (TINE) as
a solution concept for the TI games. A TINE builds on the notion of the players’ mutual
best-replies as the standard Nash equilibrium does. The major distinction now is that the
best-replies are computed at the level of the eigentypes of each player.18 The actual play of a
player is, in addition, determined by the probability for the different eigentypes to actualize
according to Definition 2.4.

Following Postulate 2, the actions taken in the decision-situations along the play of the
game define a path of projection, as discussed in Section 3.3. This path of projection
determines the state of the outcoming preferences of the players after the interactions.
Resulting preferences of a TI player are endogenous to the game, they arise in the process of
interaction. The outcome of a TI game includes the payoffs of the players, and the outcoming
profile of preferences.

16The particular exception t
(after d)
i = t

(before d′)
i is found if d strictly precedes d′ in the path, or if all of the

intermediate decision-situations between d and d′ are trivially associated to the identity projector.
17Recall that for this first work we consider only pure strategies.
18The situations that can be analyzed with the notion of Nash Equilibrium are contained in the TI framework

as an oversimplified case where only one eigentype exists for each player and therefore, the type and the
eigentype trivially coincide.
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We proceed in this section as follows:

1. First, we define a TINE as the profile of the (pure strategy) best-reply of all the
eigentypes of all players, a complete algorithm for the players’ action in the game.
See Definitions 4.1 to 4.3.

2. Second, we compute the overall utility of the paths in Definitions 4.4 and 4.5. We
propose the cashing-on-the-go for solving TI games in the Assumption 2.19

3. Third, we compute the profile of outcoming types of the players which, in general, are
different from the initial types. The play alters the preferences in accordance with
Postulate 2 (Projection) as discussed in Section 3.3. This is formalized in Definition
4.6.

I. Definition of TINE:

In Game Theory, the definition of a strategy implies an algorithm specifying what actions are
chosen by a player i in every possible situation in the game. An action has to be assigned to
every node, irregardless of whether some previous action forbids some nodes to be reached:
the strategy specifies a fully fledged and contingent instruction for the complete play. When
considering TI players, a strategy si in a TI game has to explicitly specify the action that is
selected by every possible eigentype that a player i can incarnate in each decision-situation.

Definition 4.1 (Strategies of a TI Player). Let a TI player i face a number K of decision-
situations with a set Θi(dk) of eigentypes associated for each decision-situation dk ∈ Di. A
strategy of a TI player si is a complete algorithm for her play in the TI game, and it contains

one action ai
(
θ
(n)
i (dk)

)
for each and every of the N eigentypes θ

(n)
i ∈ Θi(dk) associated to

each of the K decision-situations dk ∈ Di in which player i takes part in the game. Therefore,
si is a collection of N ×K elements,

si =
(

ai
(
θ
(1)
i (d1)

)
, ai

(
θ
(2)
i (d1)

)
, . . . , ai

(
θ
(N)
i (d1)

)
; . . .

ai
(
θ
(1)
i (dk)

)
, ai

(
θ
(2)
i (dk)

)
, . . . , ai

(
θ
(N)
i (dk)

)
;

︸ ︷︷ ︸

One action for each of the N eigentypes in each dk

. . .

ai
(
θ
(1)
i (dK)

)
, ai

(
θ
(2)
i (dK)

)
, . . . , ai

(
θ
(N)
i (dK)

))

.

(5)

Assumption 1. The optimal strategy of a TI player arises from the optimality of the actions
at the level of the eigentypes: every eigentype of every player best-responds to the expected
play of the other players computed from the best-replies of the eigentypes that enter their
current type, weighted by the coefficients of superposition in every decision-situation (node)
of the game.

Definition 4.2 (Best-reply of an Eigentype). Let Ai(d) be the set of available actions for
player i facing decision-situation d ∈ Di, and let A−i(d) be the set of available actions for

19Cashing-on-the-go has been introduced to deal with the fact that the initial preferences of TI players are,
in general, altered along the path of the game as discussed in Section 4.1.
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all the other players I \ {i} taking part in the interaction. For every given action profile of
the other players a−i(d), we can define the preferred action (best-reply) of each one of the

eigentypes θ
(n)
i ∈ Θi(d) of player i in the decision-situation d. We denote this by a∗i

[
θ
(n)
i , a−i

]

such that
a∗i
(
θ
(n)
i , a−i

)
∈ arg max

ai(d)∈Ai(d)
ui
[
θ
(n)
i ; ai(d), a−i(d)

]
. (6)

Definition 4.3 (TINE). A particular profile of strategies (s∗i ; s
∗

−i) constitutes a Type
Indeterminate Nash Equilibrium of a TI game when they are the collection of all the
eigentypes of every player best-responding to every eigentype of the other players, in the
sense of Definition 4.2, so that

ui
[
θ
(n)
i ; a∗i (d), a

∗

−i(d)
]
≥ ui

[
θ
(n)
i ; ai(d), a

∗

−i(d)
]
∀ ai(d) ∈ Ai(d) (7)

holds for every eigentype θ
(n)
i ∈ Θi(d) of every player i ∈ I, at every decision-situation d ∈ Di.

We can denote by σ∗ = σ(s∗i ; s
∗

−i) the equilibrium path of the game obtained from the
combination of these strategies, optimized at the level of the eigenpreferences. The outcome
of the TINE includes: (i) the overall utility level of every TI player, and (ii) the final state
of preferences of every TI player (see Definitions 4.5 and 4.6 below).

II. Utility of the Outcome:

According to Postulate 2, when the preferred action a∗i (d) is taken by player i, her outcoming
preferences t′i are the result of projecting the incoming type ti onto the M -dimensional
subspace (M ≤ N) of the preference relations (eigentypes) supporting that particular action
as their preferred one in the strategic interaction. And according to Postulate 1, this
superposition of eigenpreferences is now also a proper type of the player given by

t′i =
M∑

m=1

c′mθ
(m)
i , with c′m ∈ R, and

M∑

m=1

c′2m = 1. (8)

Definition 4.4 (Cashed Utility of a Preferred Action). Let player i face a decision-situation
d with the preferences given by a type ti ∈ Ti, and let a∗

−i(d) be the actions chosen by
the other players. Then, the utility cashed by player i when taking the action a∗i (d) as in
Definition 4.2 is the weighted utility of the M eigenpreferences where the weights are given
by the coefficients in the superposition:

ui
[
t′i; a

∗

i (d), a
∗

−i(d)] =

M∑

m=1

c′2m ui
[
θ
(m)
i ; a∗i (d), a

∗

−i(d)
]
. (9)

Note that the utility defined in the equation (4.4) is linear in the probabilistic content of
the outcoming preferences (compare c′2m to Definition 2.4).

Assumption 2. We compute the overall utility of the players involved in a TI game as the
addition of the local utilities cashed by the type of each of the players in the decision-situations
along the path of play.
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Definition 4.5 (Total Utility of a Path). Let σl ∈ Σ be a path σl = {d1, . . . , dL}, induced
by the strategy profile (s∗i ; s

∗

−i). Then, the total utility for player i in the play following path
σl is given by

ui[σl] =
∑

dl∈σl

ui
[
a∗i (dl), a

∗

−i(dl)
]
, (10)

with the utility of the preferred actions given in Definition 4.4.

When some paths become ‘branches’ including moves of chance, the utility shall be
considered in expected terms.

III. Outcoming Preferences:

Definition 4.6 (Outcoming State of Preferences). Given a path of play σl, and the state-
vector of initial preferences of a TI player i denoted by t0i ∈ Ti, the outcoming preferences
of the TI player i are computed by the consecutive application of the projections as a
consequence of the actions taken along the path of play:

t
(end)
i =

∏

dl∈σl

Pa∗i (dl)
t0i for every player i ∈ I. (11)

After the dicussion presented up to this point of the paper, equation (11) translates into
computations by means of Definition 2.3 and Postulate 2. The notation

∏

dl∈σl
Pa∗i (dl)

t0i for
the subsequent application of projectors has to be understood in the sense of the composition
of operators, Pa∗i (dL)

· · ·Pa∗i (d2)
Pa∗i (d1)

tii
0. This determines a process of all the players updating

their knowledge about the state of preferences of themselves and the other players in the game.
The projections reflect the evolution of the types resulting from the choice of actions (modeled
as the measurement of preferences) originated by the eigentypes’ strategic reasoning, so the
rule for updating knowledge is a constituent part of the solution of the game.

5. Illustrative Example

The following example is motivated by the one presented in Lambert-Mogiliansky (2010).
The story: Alice (player A) is a Tenured Professor at University who starts working with her
new student Bob (player B). Bob is finishing his Master studies and later on he can choose
to work with Alice for a PhD. For the long-term, Alice wants Bob to agree to cooperate with
her in a very specific idea of research. Bob is indeterminate with respect to his willingness
to engage in this specific topic which appeals to open-mindness. Bob is also indeterminate
with respect to his taste for personal challenges.20

First: Alice is currently Bob’s Master thesis advisor and she has two different ideas to
propose him for his Master thesis: either a standard problem (S) or an intricate one (I).

Second: once Alice offers a specific topic, Bob can work on his Master thesis either on a
routine basis (R) or adopting a more creative approach (C). Bob’s preferences regarding his

20We assume the open-mindness and the taste for personal challenge are not the same psychological features
but they are somehow related.
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12 13 16 17 18 19

5

9

13 14

Standard
Task

Intricate
Task

Routine
Solution

Creative
Solution

Routine
Solution

Creative
Solution

Invitation Invitation Invitation

Accept Reject Accept Reject Accept Reject

Invitation

Accept Reject

Figure 1: Game tree. DA contains the nodes depicted as squares, DB contains the nodes
depicted as circles. Diamonds are the ending nodes.

Master thesis are given by two different contributions θ1 and θ2.
21 The first one reflects Bob’s

necessity to get his Master studies finished so a personal challenge for his final dissertation
is not very desirable. The second one reflects the joy for a motivated student when solving a
challenge.

Third: After Bob finishes his Master thesis, Alice invites him (Inv) for a PhD
collaborating in her specific project.

Fourth: Bob can accept (A) or reject (R) such offer. Bob’s preferences in this stage are
given by two choice-making eigentypes: τ1 if he is open-minded and willing to work with
Alice, or τ2 if he will not trust her very specific idea and will refuse her as PhD advisor.

Description of this interaction as a TI game of maximal information:

1. I = {Alice, Bob}, labeled as A and B, respectively.
2. The tree of the game is shown in Figure 1, giving the decision-situations and the timing

of the game. DA = {1; 4-7}, and DB = {2-3; 8-11} are the decision-situations for A
and B, respectively.

3. The space of types is such that player A has a unique and trivial type, while
TB = Span

(
{θ1, θ2}

)
= Span

(
{τ1, τ2}

)
. The decomposition for the player A is trivial in

the sense that there is no indeterminacy relevant to the game for this player. The player
B presents two sets of eigentypes, associated to the measurements of the θ-preferences
in nodes 2-3 and of the τ -preferences in nodes 8-11, with

(
θ1
θ2

)

=

(√
0.4

√
0.6√

0.6 −
√
0.4

)(
τ1
τ2

)

(12)

21We shall understand this two different aspects of Bob’s personality as two orthogonal eigentypes of θ-
preferences. See Definition 2.1.
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1

2 3

4 6 7

8 10 11

Standard
Task

Intricate
Task

Routine
Solution
HΘ1 and Θ2L

Routine
Solution
HΘ1, 60%L

Creative
Solution
HΘ2, 40%L

Invitation Invitation Invitation

Accept

HΤ1, 96%L

Reject

HΤ2, 4%L

Accept

HΤ1, 40%L

Reject

HΤ2, 60%L

Accept

HΤ1, 60%L

Reject

HΤ2, 40%L

Figure 2: Reduced game tree after discussion in section 2.2, showing only the actions that
will be taken according to the strategic reasoning. Also the probabilities for each type being
realized are written in the links. Note the differences in the probabilities for {τ1, τ2} according
to the different paths of measurements. Node 2 corresponding to Bob has been differentiated
by color from node 3 to emphasize that the decision-situation 2 is associated to a trivial
measurement which does not clear uncertainty in the preferences. See the discussion in the
text.

giving the correlations between the orthonormal basis.
4. The initial state for the player A is fully determined, and for the player B we have

t0B = (
√
0.6,

√
0.4)θ, as given parameters. From (12), t0B is given in coordinates of the

τ -basis of eigenpreferences by t0B = (
√
0.96,

√
0.04)τ .

5. The available actions for each player are labeled in the Figure 1.
6. Specification of the payoffs:

(i) The payoffs that both players will receive from their collaboration in the Master
thesis are given in the following two matrices:

θ1 S I

R (0; 0) (-10; 20)

C (-5; 0) (-15; 70)

and

θ2 S I

R (0; 0) (5; 20)

C (-5; 0) (10; 70)

, (13)

representing (uθ1B , uA) and (uθ2B , uA), respectively. Alice’s payoff structure represents
the fact that she would prefer at this point of her collaboration with the student to give
him a difficult problem. On the other hand, Bob’s payoff structure reflects that for the
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eigentype θ1, receiving a standard offer is always more pleasant, as well as working in a
routine basis is always more profitable, regardless of the task being the standard or the
intricate one. For the eigentype θ2, a personal challenge is more enjoyable, so receiving
an intrincate task is more pleasant than receiving a standard problem. Dealing with an
intricate task in the creative way is the most preferred action, but if the received task
is the standard one, delivering a routine solution is also acceptable.

(ii) For doing the PhD, Bob will get a fixed amount of utility u due to the degree
he earns and the scholarship he receives, regardless of who is his supervisor (the τi
eigentypes as choice-making types have already been explained above). For Alice, who
really wants to see her new idea developed, if Bob agrees (A) to work with her, she will
receive uA(A, Inv) = 200 or uA(R, Inv) = 0 if he rejects and goes with another advisor.

Attending to the payoffs given in the matrices (13), the θ1-type contribution to Bob’s
personality makes him prefer a routine (R) solution to a standard task (S) proposed by Alice
as well as if it were the case that she offers the intricate one (I), while the θ2-type contribution
wills to give a routine (R) solution to a standard task (S) but a creative solution to an intricate
problem (I).

From the setup of the TI game, Bob’s initial type is the pure state t0B = (
√
0.6,

√
0.4)θ,

which according to Postulate 1 reflects that Bob’s personality is composed of the
characteristics of θ1 and θ2, with weights of 60% and 40%, respectively.

Two possible paths:

1. σ1: At node 2, after Alice offered a standard task (S), Bob will always give a routine
solution (R). Because of Alice’s standard proposal, there is no contradiction between
the willingness of the two contributions to Bob’s personality, so Bob’s reaction does not
clear the indeterminacy in his preferences in the sense of realizing a particular θi.

2. σ2: At node 3, after Alice offered an intricate task (I), the two contributions to Bob’s
personality disagree on the desired action to take. At this point, the action he takes
will project his preferences onto θ1 if he goes for a routine solution (R), or onto θ2 if he
goes for a creative solution (C). See Postulate 2.

For both paths, the utilities have to be computed in expected terms since there are some
non-deterministic lotteries. In the case of σ1, there is only one move of chance: the final
measurement on τ . In σ2 there are two moves of chance: the initial measurement on θ, and
final the measurement on τ . It is worth to note that in this second case, the composition of
the incoming pure state for the final measurement differs depending on what was the outcome
of the initial measurement. Taking these observations into account, the game tree in Figure 1
is reduced to the one in Figure 2. See the different composition of the pure states for the final
measurement (recall that Alice is interested on getting Bob to accept the research project).

Utilities and TINE: Computing the utility levels uA[σ1] = 0.96 · 200 = 192, and uB[σ1] = u
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is straightforward. For the second path,

uA[σ2] = p3(θ1)
{

uA(R, I) + p10(τ1)uA(A, Inv) + p10(τ2)uA(R, Inv)
}

+ p3(θ2)
{

uA(C, I) + p11(τ1)uA(A, Inv) + p11(τ2)uA(R, Inv)
}

gives uA[σ2] = 0.6(20 + 0.4 · 200 + 0.6 · 0) + 0.4(70 + 0.6 · 200 + 0.4 · 0) = 136, and

uB[σ2] = p3(θ1)
{

uB(θ1, R, I) + p10(τ1)uB(τ1, A, Inv) + p10(τ2)uB(τ2, R, Inv)
}

+ p3(θ2)
{

uB(θ2, C, I) + p11(τ1)uB(τ1, A, Inv) + p11(τ2)uB(τ1, R, Inv)
}

gives uB[σ2] = 0.6(−10 + 0.4 · u+ 0.6 · u) + 0.4(10 + 0.6 · u+ 0.4 · u) = u− 2.

Then, the Type Indeterminate Nash Equilibrium of this game is such that Bob’s preferred
actions are Routine Solution (R) both for θ1 and θ2 eigentypes, when confronting a Standard
Task. Thus, when Alice proposes the Standard Task (S), Bob’s preferences are projected only
in the last stage of the game, with the non-deterministic measurement of the choice-making
types τ1 and τ2 with high probability of Bob accepting the PhD project, the ultimate purpose
of Alice. This example can be considered as a simplified model of self-control in the sense
that in this interaction, Alice restrains herself from overwhelming Bob with a difficult task
when he is under the pressure of finishing his Master thesis, so that his willingness to engage
in the PhD project remains intact.

Strategic manipulation: Bob’s final decision, i.e., whether to accept or to reject the PhD
proposal is a measurement with respect to the τ -eigentypes of preferences. As it is reflected
in the Figure 2, the composition of his final preferences is affected by the presence (or absence)
of a previous projection onto any of the θi’s. The interesting feature is that this measurement
will determine Bob’s final preferences in the game, but it is Alice who has the power to
manipulate the composition of his preferences by means of her initial choice. The sequence
of measurements, if some of these are non-commuting, forces an evolution of the preferences
that can be selected by the players directly with their choice of strategies, a distinctive
contribution of the Type Indeterminacy model: an open door towards a theory of games with
full interaction between the agents.

6. Concluding remarks

The Type Indeterminacy approach provides explanation for a wide range of behavioral
anomalies in simple decision-making, and after the present proposal of extending the
formalism to games with TI players, we conjecture that further development of equilibrium
concepts for TI games can provide important insights in the study of behavioral patterns in
interactive situations. The study of the dynamics of the Type Indeterminate interactions can
contribute to the fundamental discussion suggested by Daniel Kahneman: “Is the intuitively
attractive judgment or course of action in conflict with a rule that the agent would endorse?”
(Kahneman, 2003).
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Here, the eigentypes represent the associative or intuitive level of the reasoning process,
while the notion of the type as a linear superposition of these eigenpreferences subject to the
measurement process implies the existence of a rule-governed level of reasoning contained in
the functional form adopted for the definition of the utility along the path.

The approach we have presented in this paper departs from the standard assumption
of reference-independence, because the final states are no longer the only carriers of utility.
It retains the tractability of expected utility theory however, and respects the paradigm of
utility maximization at all levels of reasoning.

The TI model challenges the claim by Kahneman and Thaler (2006) that when considering
some “virtuous choices that people make may involve a lack of empathy for the future self
who will have to live with the choice [...] it is unlikely that these conflicting choices are
both utility maximizing.” The concept of Type Indeterminate Nash Equilibrium builds on
the best-replies of the (potential) eigentypes of the players in a way similar to an agent-form
game, and at the same time, the TINE reflects optimization at the level of the player through
the maximization of the overall expected utility along the path of the game.

One of the first extensions which can be considered in this research program is the
introduction of time-dependent preferences. When selecting the most preferred action, each
eigentype is responsible not only of what happens in the present interacting situation, but
also of how such outcome conditions the future composition of the type of the player as
a consequence of the measurement process. In the example that we have illustrated, we
considered both situations (the Masther Thesis and the future collaboration) to be equally
weighted as a simplifying assumption for the ease of exposition. Nevertheless, the introduction
of the appropriate terms to represent constant discount rates, hyperbolic discounting as well
as different kinds of myopia (the ability of each eigentype to forecast, for example, only a
few number of steps ahead) can be easily contained in the formulation, enriching the effects
that can be described. See, e.g., Lambert-Mogiliansky and Busemeyer (2012), where they
study different behavioral aspects related to the concept of self-control within the framework
of one TI decision-maker with temporal discounting. A classical discussion of several models
of time-dependent preferences can be found in Loewenstein (2008).

Despite of some conceptual differences, the TI approach shares one of the nicest
characteristics of the Projective Expected Utility model introduced by La Mura (2009).
The cashed utility of an action can also be written as a bilinear form, and therefore we
can introduce very naturally some interferences (penalties or rewards) due to the agents
experiencing the superposition of some (confronting or reinforcing) contributions by some
of the mutually exclusive eigentypes. Since the eigentypes are orthonormal by definition,
this makes it very easy to think about contradictory contributions in the personality and
preferences of the players.

The extension from pure states to the formulation in terms of density matrices has been
excluded from this paper to avoid computational complexity, in order to keep the discussion
as fundamental and formal as possible according to our best.
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