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Abstract

A new algorithm is developed to solve models with heterogeneous agents
and aggregate uncertainty. Projection methods are the main building blocks
of the algorithm and� in contrast to the most popular solution procedure�
simulations only play a very minor role. The paper also develops a new
simulation procedure that not only avoids cross-sectional sampling variation
but is 10 (66) times faster than simulating an economy with 10,000 (100,000)
agents. Because it avoids cross-sectional sampling variation, it can generate
an accurate representation of the whole cross-sectional distribution. Finally,
the paper outlines a set of accuracy tests.
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1 Introduction

Models with heterogeneous agents and aggregate uncertainty are becoming increas-
ingly important. They not only improve the predictions of representative agent
models, they also make it possible to study the behavior of sub groups in a general
equilibrium framework. Solving such models is di¢ cult, because the set of state
variables contains the cross-sectional distribution of agents�characteristics, which is
a time-varying in�nite dimensional object in the presence of aggregate uncertainty.
The most commonly used algorithm summarizes the cross-sectional distribution

with a �nite set of moments and calculates the transition law for these state variables
using a simulation procedure.1 This algorithm is relatively easy to implement and
has been used to solve a variety of models. Nevertheless, it is important to have
alternative algorithms. First, if an alternative algorithm generates a very similar
numerical solution then this builds con�dence in the generated results. Accuracy
checks are of course also helpful in this respect but accuracy tests have its limits.
It is especially di¢ cult to test in all possible dimensions if the model has many
dimensions. For complex models it is not uncommon that the results of some tests
are not that great. If they occur in dimensions that are deemed not that important
for the main properties of the model, we typically argue that it is not worth the
extra computing time to �x the problem and sometimes it may not even be feasible.
The problem is that it is very hard to determine whether inaccuracies in some
parts of the model do not spill over to other more important parts or whether tiny
but systematic inaccuracies do not accumulate to something more important. It is
therefore important if one can replicate results using algorithms that uses di¤erent
methodologies. The second reason to develop multiple algorithms is that di¤erent
algorithms have di¤erent strenghts and weaknesses and so one type of algorithm
may be more suitable for a particular problem.
The algorithm developed in this paper to solve models with heterogenous agents

and aggregate uncertainty is quite di¤erent from the popular simulations-based al-
gorithm in that simulations only play a minor role. In particular, simulation pro-
cedures are not used to obtain the aggregate law of motion. Like Den Haan (1997)
and Reiter (2002), we parameterize the cross-sectional distribution, which makes it
possible to obtain a numerical solution using standard quadrature and projection
techniques. Our algorithm has important e¢ ciency gains over the algorithms devel-
oped in these two papers. In particular, we follow Reiter (2002) in using reference
moments to get a better characterization of the cross-sectional distribution without
increasing the number of state variables, but we do so in a way that is much more

1Descriptions of this algorithm can be found in Den Haan (1996), Krusell and Smith (1998),
and Rios-Rull (1997).
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tractable.
Two elements of the algorithm are likely to be useful in other applications as well.

First, to obtain reference moments we need to simulate the economy and we develop
a simulation procedure that avoids cross-sectional sampling uncertainty. Second,
we propose a particular class of parameterizing densities that makes the problem of
�nding the coe¢ cients that correspond to a set of moments a convex optimization
problem. Using this class of functions avoids the need for good starting values,
whereas for other functional forms we found this to be a major concern. Linking
moments with a parameterized density is part of our simulation procedure and also
plays a key role in the solution algorithm itself.
The standard simulation procedures constructs a panel of NT observations and

NN agents. By parameterizing the cross-sectional distribution and using quadrature
integration, however, our procedure can generate an accurate simulation with a con-
tinuum of agents. Note that models with a large number of heterogeneous agents
almost always assume a continuum of agents, so that the law of large numbers en-
sures that idiosyncratic risk is averaged out. In fact, the assumption of a continuum
of agents plays a key role, not only in the speci�cation of the state variables and
the de�nition of the equilibrium, but also in the construction of most algorithms.2

Thus, by simulating with a continuum instead of a �nite number of agents, we stay
much closer to the actual model being solved.
Our simulation procedure not only avoids cross-sectional sampling variation, it

is also much cheaper. We found that simulating an economy with 10,000 agents for
1000 periods took 13 times as long as simulating the same economy with a continuum
of agents. In our own algorithm, the simulation procedure only plays a very minor
role. This is, of course, no reason not to use a more accurate simulation procedure.
For algorithms that use a simulation procedure to calculate the aggregate law of
motion, however, the improved simulation procedure will have bigger bene�ts.
The rest of this paper is organized as follows. The next section describes the

production economy of Krusell and Smith (1998). Section 3 brie�y discusses existing
algorithms and summarizes the contributions of this paper. Section 4 describes
the algorithm in detail and Section 5 describes the simulation procedure. Section
6 discusses how to check for accuracy and reports the results. The last section
concludes.

2In particular, a crucial property being used is that conditional on realizations of the aggregate
shock and this period�s cross-sectional distribution, next period�s cross-sectional distribution is
known with certainty.
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2 The production economy

The economy is a production economy with aggregate shocks in which agents face
di¤erent employment histories and partially insure themselves through (dis)saving
in capital. For more details see Krusell and Smith (1998).

Problem for the individual agent. The economy consists of a unit mass of ex
ante identical households. Each period, agents face an idiosyncratic shock " that
determines whether they are employed, " = 1, or unemployed, " = 0. An employed
agent earns a wage rate of $t: An employed agent earns an after-tax wage rate of
(1� � t)$t and an unemployed agent receives unemployment bene�ts �$t. Markets
are incomplete and the only investment available is capital accumulation. The net
rate of return on this investment is equal to rt� �, where rt is the rental rate and �
is the depreciation rate. Agent�s i maximization problem is as follows:

max
fcit;kit+1g1t=0

E
P1

t=0 �
t (cit)

1��1
1�

s.t. cit + kit+1 = rtk
i
t + (1� � t)$tl"

i
t + �$t(1� "it) + (1� �)kit

kit+1 � 0

(1)

Here cit is the individual level of consumption, k
i
t is the agent�s beginning-of-period

capital, and l is the time endowment.

Firm problem. Markets are competitive and the production technology of the
�rm is characterized by a Cobb-Douglas production function. Consequently, �rm
heterogeneity is not an issue. Let Kt and Lt stand for per capita capital and the
employment rate, respectively. Per capita output is given by

Yt = atK
�
t (lLt)

1�� (2)

and prices by

$t = (1� �) at(
Kt

lLt
)� (3)

rt = �at(
Kt

lLt
)��1 (4)

Aggregate productivity, at, is an exogenous stochastic process that can take on two
values, 1��a and 1 + �a.
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Government The only role of the government is to tax employed agents and to
redistribute funds to the unemployed. We assume that the government�s budget is
balanced each period. This implies that the tax rate is equal to

� t =
�ut

lLt
: (5)

where ut = 1� Lt denotes the unemployment rate in period t.

Exogenous driving processes. There are two stochastic driving processes. The
�rst is aggregate productivity and the second is the employment status. Both are
assumed to be �rst-order Markov processes. We let �aa0""0 stand for the probability
that at+1 = a0 and "it+1 = "0 when at = a0 and "it = "0. These transition probabilities
are chosen such that the unemployment rate can take on only two values. That is,
ut = ub when at = ab and ut = ug when at = ag with ub > ug.

Equilibrium. Krusell and Smith (1998) consider recursive equilibria in which the
policy functions of the agent depend on his employment status, "i, his beginning-
of-period capital holdings, ki, aggregate productivity, a, and the cross-sectional
distribution of capital holdings. An equilibrium consists of the following.

� Individual policy functions that solve the agent�s maximization problem.

� A wage and a rental rate that are determined by 3 and 4, respectively.

� A transition law for the cross-sectional distribution of capital, that is consistent
with the investment policy function.

3 Relation to existing algorithms

In this paper we give a brief overview of existing algorithms and then highlight the
contributions of this paper.

3.1 Existing algorithms

A standard aspect of numerical algorithms that solve models with heterogeneous
agents is to summarize the in�nite-dimensional cross-sectional distribution of agents�
characteristics by a �nite set of moments, m. The transition law is then a mapping
that generates next period�s moments, m0, given the values of the moments in the
current period, m, and the realization of the aggregate shock. Den Haan (1996),
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Krusell and Smith (1998), and Rios-Rull (1997) propose to calculate this transition
law as follows. First, construct a time series for the cross-sectional moments by
simulating an economy with a large but �nite number of agents. Second, regress
the simulated moments on the set of state variables. The �rst disadvantage of the
simulation procedure is that moments are calculated using Monte Carlo integration,
which is known to be an ine¢ cient numerical integration procedure.3 The second
disadvantage is that the observations are clustered around the mean, since they are
taken from a simulated series. An e¢ cient projection procedure, however, requires
the explanatory variables to be spread out, for example, by using Chebyshev nodes.4

Consequently, the use of simulation procedures may make it expensive (in terms of
computing time) to obtain an accurate solution, especially if one wants the solution
to be accurate across the whole state space.
Den Haan (1997) parameterizes the cross-sectional distribution with a �exible

functional form, P (k; �), which makes it possible to use quadrature techniques to
do the numerical integration. In addition, his algorithm uses Chebyshev nodes to
construct a grid of explanatory variables for the projection step. The coe¢ cients
of the approximating density, �, are pinned down by the set of moments used,
m. The disadvantage of Den Haan (1997) is that the shape of the distribution is
completely pinned down by the moments used as state variables and the class of
�exible functional forms used. Consequently, a large number of state variables may
be needed to get the shape of the cross-sectional distribution right even when just
a few moments actually matter for agents� behavior. Another drawback of Den
Haan (1997) is that an ine¢ cient procedure is used to �nd the coe¢ cients of the
approximating density. Reiter (2002) improves upon the algorithm of Den Haan
(1997) in an ingenious way by letting the shape of the distribution depend not only
on the moments used as state variables, m; but also on a set of reference moments
that are obtained by a simulation procedure.
Promising recent alternatives to the standard algorithm have been developed in

Preston and Roca (2006) and Reiter (2006). Reiter (2006) �rst solves a model with-
out aggregate uncertainty using standard projection procedures. Next, by replacing
the endogenous variables in the equations of the model with the parameterized nu-
merical solution, he obtains a di¤erence equation in the numerical coe¢ cients. Then
he uses perturbation techniques to solve for the sensitivity of the numerical solution
to aggregate shocks. This is quite a di¤erent approach then the procedure used
here, which is good for the profession, because the more variety among available
approaches used the better. Preston and Roca (2006) use a "pure" perturbation

3See Judd (1998).
4Note that in the classic regression problem the standard errors, �2(X 0X)�1, are also lower

when the explanatory values are more spread out.
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method to solve the model.5 Perturbation methods are likely to work well when
the distribution needs to be characterized by many statistics, because dealing with
many arguments is the strength of perturbation methods.

3.2 The contributions of this paper

The main contributions of this paper are the following.

Calculating the transition law of the cross-sectional distribution. The
disadvantage of Reiter (2002) is that the particular implementation of the idea of
reference moments is very cumbersome.6 As in Den Haan (1997) and Reiter (2002),
this paper develops a procedure to calculate this transition law without relying on
simulation procedures to calculate moments and to carry out the projection step.
As in Reiter (2002), it uses reference moments, but the modi�cations introduced
make the procedure much more straightforward to implement. In other words, the
algorithm is an important improvement over earlier attempts that use projection
methods to solve models with heterogeneous agents. Moreover, because the building
blocks are so di¤erent from the simulation procedures, it provides a constructive
alternative.

Calculating the approximating density for given moments. The algorithm
links a set of moments with a parameterized density. Consequently, an important
part of the algorithm is the mapping between the set of moments and the coe¢ cients
of the density. One possibility would be to use an equation solver that chooses the
set of coe¢ cients so that the moments of the parameterized density are equal to the
speci�ed moments. We found this procedure to be slow and intermittently breaking
down. By choosing a particular choice for the basis functions of the approximating

5They replace the inequality constraint with a penalty function, since perturbation methods
cannot deal well with the kind of inequality constraint used here. This also accomplishes that
agents do not have negative capital holdings and try to stay away from low capital stocks.

6Reiter (2002) constructs a reference density G(m), which relates the shape of the distribution
to the set of moments that serve as state variables. It is a weighted average of distributions from a
simulated economy, where distributions with moments closer to m get more weight. Step functions
are used to construct a reference distribution, which has the advantage of being very �exible but
has the disadvantage of using a lot of parameters. One problem of the approach in Reiter (2002)
is that the moments of the reference density may not be equal to m. This means that one �rst has
to apply operations to ensure that one obtains a new reference function eG(m) for which this is not
the case. But even if m contains only �rst and second moments, then this problem entails more
than a linear transformation, since eG(m) has to be a step function that conforms to the speci�ed
grid and cannot violate the constraints on the support of the distribution, such as the constraint
that k � 0.
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polynomial we transform this problem into a convex optimization problem, for which
reliable convergence algorithms exist. This procedure is likely to be useful outside
the literature of numerical solution techniques, since characterizing a cross-sectional
distribution with a CDF from a class of �exible functional forms is a common prob-
lem in econometrics.

Simulating a panel without cross-sectional sampling variation. This pa-
per develops a procedure to simulate an economy without cross-sectional sampling
variation. Standard procedure is to simulate data using a �nite number of agents
and a �nite number of time periods, which means that the outcome depends on
the particular random draw used. Sampling variation disappears at a slow rate and
could be especially problematic if the number of a particular type of agent is small
relative to the total number of agents.
Existing models with a large number of heterogeneous agents typically assume

that there is a continuum of agents. This implies that conditional on the realization
of the aggregate shock there is no cross-sectional sampling variation, a property that
plays a key role in the de�nition of the set of state variables and the de�nition of
the recursive equilibrium. The simulation procedure developed in this paper sticks
to the assumption of the model and uses a continuum of agents. Moreover, because
the procedure avoids cross-sectional sampling variation, it can obtain an accurate
description of aspects of the distribution such as behavior in the tails much more
easily than simulation methods.

Accuracy tests. It is never trivial to check the accuracy of a numerical solution
for dynamic stochastic models, since the true solution is not known. Checking for
accuracy is made especially di¢ cult, because there are many aspects to the solution
of this type of model. In this paper, we discuss several tests to evaluate the accuracy
of the solution for a model with heterogeneous agents.

4 The algorithm

In this section, we discuss the di¤erent steps of the algorithm. In Section 4.1, we
start with a discussion of the state variables used, followed by an overview of the
algorithm in Section 4.2. The remaining sections describe the steps of the algorithm.
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4.1 State variables and transition laws

Krusell and Smith (1998) consider a recursive equilibrium in which the policy func-
tions of the agent depend on his employment status, "i, his beginning-of-period
capital holdings, ki, aggregate productivity, a, and the cross-sectional distribution
of capital holdings.7 Let

 �
fw(k) be the cross-sectional distribution of beginning-of-

period capital holdings for agents with employment status w 2 fe; ug and k � 0:
The arrow pointing left indicates that the cross-sectional distribution refers to the
distribution at the beginning of the period (but after all shocks are observed, that
is once individual employment shocks and aggregate shocks had taken place). Sim-
ilarly,

�!
fw(k) refers to the distribution at the end of the period. The following two

steps determine the transition law that links the current-period distribution,
 �
fw(k);

with next period�s distribution,
 �
fw0(k).

� The end-of-period distribution is determined by a,  �f e,  �fu, and the individual
investment function. That is,

�!
f e =

�!
�e(a;

 �
f e;
 �
fu) and

�!
fu =

�!
�u(a;

 �
f e;
 �
fu).

� Next period�s beginning-of-period distribution,
 �
fw0(k), is determined by the

end-of-period distribution and the employment-status �ows corresponding to
the values of a and a0. Thus,

 �
f e 0 =

 �
�e(a; a0;

�!
f e;
�!
fu) and

 �
fu0 =

 �
�u(a; a0;

�!
f e;
�!
fu). �

�e(�) and ��u(�) are simple functions that are determined directly by the tran-
sition probabilities.8

An alternative to using the cross-sectional distribution of employment and capital
holdings is to use all past realizations of the aggregate shocks.9 For the model
considered here, we found that a large number of lags is needed. Nevertheless, if one
doesn�t have a complete description of the cross-sectional distribution, it still may
be worthwhile to add some lagged values of a.10 In our algorithm we, therefore, add
the lagged value of a as a state variable. But there is another reason, which will
become evident in the remainder of this section.

7Miao (2006) shows the existence of a recursive equilibrium, but also uses expected payo¤s as
state variables. It is not clear whether a recursive equilibrium exists when the smaller set of state
variables is used. For a numerical solution this is less important in the sense that approximation
typically entails not using all information.

8Details are given in A.1.
9This is the approach used in Veracierto (2002). He solves a model with irreversible investment

in which the cross-sectional distribution matters because the investment decision is of the (S,s)
variety. Instead of keeping track of the cross-sectional distribution, he keeps track of a history of
lower and upper threshold levels.
10The numerical cost is fairly low, since a can take on only two values.
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To deal with the in�nite dimension of the cross-sectional distribution, we follow
Den Haan (1996, 1997), Krusell and Smith (1998), and Rios-Rull (1997) and describe
the cross-sectional distribution with a �nite set of moments. The remainder of this
section discusses in detail which moments we use.
In this model, agents face a borrowing constraint, k � 0. We, therefore, include

the fraction of agents of each type that start the period with zero capital holdings, ��
me;c and

 ��
mu;c. Employed agents never choose a zero capital stock. This means that

the density
�!
f e does not have mass at zero. In contrast,

 �
f e does have mass at zero,

because some of the agents that are employed in the current period were unemployed
in the last period and chose a zero capital stock. Both

 ��
me;c and

 ��
mu;c can be easily

calculated from
��!
mu;c
�1 and the employment-status �ows corresponding to the values

of a and a0. Thus, instead of using
h
a;
 ��
me;c;

 ��
mu;c

i
we also can use

h
a; a�1;

��!
mu;c
�1

i
. We

prefer to use
h
a; a�1;

��!
mu;c
�1

i
; because a�1 can take on only two values and is, thus,

computationally an inexpensive state variable. Moreover, as explained above a�1
could have predictive value that goes beyond the ability to determine

 ��
me;c and

 ��
mu;c.

In addition, the algorithm uses centralized moments of the distributions of strictly
positive capital holdings . The set of moments that are used as state variables are
stored in the following vector

m =
h��!
mu;c
�1;
 ��
me;1; � � � ;

 ���
me;NM ;

 ��
mu;1; � � � ;

 ����
mu;NM

i
;

where
 ��
mw;j is the jth-order centralized moment for workers with employment status

w and strictly positive capital holdings. The dimension of the vector is N�M =
2NM + 1.
The aggregate state is thus given by s = [a; a�1;m]. Since we only use a

limited set of moments as state variables, the transition law only needs to spec-
ify how this limited set of moments evolve over time. Thus, instead of calculat-

ing
�!
�e(�) and �!�u(�), we now calculate [

��!
mu;c;

��!
mu;1; � � � ;

����!
mu;NM ] =

�!
�un(s; 

�u

n ) and

[
��!
me;c;

��!
me;1; � � � ;

���!
me;NM ] =

�!
�en(s; 

�e
n ), where

�!
�wn (s) is an n

th-order polynomial with
coe¢ cients  �

w

n . To simplify the notation we will typically write
�!
�w(s), but one

should keep in mind that this is an approximating function with coe¢ cients that
are determined by the algorithm. In the implementation of the algorithm, we set� as
in Krusell and Smith (1998)�NM equal to 1.
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4.2 Overview

An important part of this algorithm is to avoid Monte Carlo integration by approx-
imating the densities

 �
f e and

 �
fu with a �exible functional forms. To determine this

functional form, we use the moments that are used as state variables, m, as well
as some additional information that we will refer to as "reference moments". The
reference moments are higher-order moments that are helpful in getting the shape
of the distribution right.
The algorithm uses the following iterative procedure to solve the model.

� Given transition laws, �!�e(s) and �!�u(s); solve for c("; k; s) and k0("; k; s). This
is discussed in Section 4.3.

� Use the solutions for the individual policy functions, c("; k; s) and k0("; k; s)
to obtain information about the "reference moments". This is discussed in
Section 4.4.

� Given solutions for the individual policy functions, c("; k; s) and k0("; k; s),
solve for

�!
�e(s) and

�!
�u(s). This is discussed in Section 4.6. This requires

setting up a grid of the aggregate state variables [a; a�1;m] and a procedure to
link the values of the moments m and the reference moments with an explicit
cross-sectional density. This procedure is discussed in Section 4.5.

� Iterate until the transitions laws used to solve for the individual policy func-
tions are close to the transition laws implied by the individual policy functions.

4.3 Procedure to solve for individual policy functions

The procedure to solve for individual policy functions relies on standard projection
methods, except that we modify the standard procedure to deal with the inequality
constraint on capital. In this section, we describe how to solve for the individual
policy rules taking the aggregate policy rules

�!
�e(s) and

�!
�u(s) as given. The �rst-

order conditions of the agent are given by11

c("; k; s)� = E [�c("0; k0; s0)� (1 + r(s0))] for k0 > 0;
c("; k; s)� � E [�c("0; k0; s0)� (1 + r(s0))] for k0 = 0; and (6)

c+ k0 = r(s)k + w(s)l"+ (1� �)k; (7)

11We have suppressed the i superscript for notational convenience.
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In this system w(s) and r(s) only depend on a and the aggregate capital stock
and can be solved directly from Equations 3 and 4. The conditional expectation in
Equation 6 is a function of the individual and aggregate state variables. To solve
the individual problem we approximate this conditional expectation with a �exible
functional form. That is,

E
�
�c("0; k0; s0)� (1 + r(s0))

�
� 	n(k; "; s; En ); (8)

where 	n(�) is an nth-order polynomial and  En its coe¢ cients. Let k("; s) be the
capital stock such that

k0 = 0 if k � k("; s): (9)

Then @k0=@k = 0 for k < k("; s). This implies that E[�c("0; k0; s0)� (1 + r(s0))] as a
function of k is �at for k < k and nondi¤erentiable at k = k. When k < k("; s) one
does not need the approximation 	n(�); since k0 = 0 and one can solve consumption
from the budget constraint. To calculate the approximation for the conditional
expectation, we only use grid points at which k0 > k("; s). This means that the
grid is no longer �xed within the algorithm and we loose some of the optimality
properties of using Chebyshev grid points, but we found that with this procedure
we can obtain more accurate solutions.
Besides this modi�cation, our procedure to solve for the individual policy rules

is a standard application of projection methods as discussed in Judd (1992). In
particular, we use the following procedure.

� Construct a grid for the values of individual and aggregate state variables.

� Use  as the initial value for  En . Given the value  , it is straightforward to
solve for c("; k; s) and k0("; k; s) from the �rst-order condition and the budget
constraint.

� At each grid point calculate k0;

� For all possible realizations of a0 and "0 calculate �c("0; k0; s0)� (1 + r(s0)).
This requires calculating m0 but this is easy since

�!
�e and

�!
�u are given.12 Next,

calculate E[�c("0; k0; s0)� (1 + r(s0))] by weighting the possibly outcomes with
the probabilities.

� Perform a projection to obtain a new estimate for  En , b .
� Use a weighted average of b and  as a new initial value for  En .

12For details see A.1.
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� Iterate until the coe¢ cients have converged.13

4.4 Procedure to generate reference moments

The reference moments are used to ensure that the functional form of the cross-
sectional distribution is appropriate without using too many moments explicitly as
state variables. Note that an extra state variable increases the dimension of the grid
and the set of arguments of each function, whereas an extra reference moment does
not. Given the complexity of the system one has to rely on simulations to obtain
information about the shape of the distribution. Thus, we also use a simulation
procedure to obtain reference moments, but we propose a new simulation procedure
that reduces the amount of sampling variation. This new simulation procedure is
discussed in Section 5.
The simulation generates a time series with for each period a set of observations ��

mw;j
t for w 2 fe; ug and j 2 fNM +1; � � � ; NMg. The simplest way to proceed would

be to use the sample averages as the reference moments, but we let the reference
moments depend on a.14

4.5 Procedure to �nd cross-sectional distribution

At each grid point, we know the values of a and a�1 as well as the values of
 ��
mw;j

for w 2 fe; ug and j 2 fc; 1; � � � ; NMg. We also have a set of higher-order reference
moments

 ��
mw;j, w 2 fe; ug and j 2 fNM + 1; � � � ; NMg. Let P (k; �w) be the expo-

nential of a polynomial of order an NM with coe¢ cients �w. One way to solve for

13As pointed out by Reiter (2006), one doesn�t need the law of motion for m0 to solve the
individual problem. Using the parameterized cross-sectional distribution, one could in principle
use quadrature methods to directly calculate the values of m0 when needed. By doing this one
could in each iteration not only update the individual policy rules but also the law of motion for
the aggregate state variables. This is likely to speed up the algorithm if it is on course towards
the �xed point, but the simultaneous updating might make the algorithm less stable.
14Without complicating the algorithm, one could let the higher-order moments depend on all

the elements of the aggregate state variables, s, that is

 ���
mw;j = �wn (s), (10)

where �wn is an nth -order �exible functional form. One can obtain the coe¢ cients of �wn by a
simple regression and at each aggregate grid point it is trivial to use �wn to determine the set of
reference moments. We have not done so, because� as pointed out by Young (2005)� higher-order
moments do not exhibit a clear relationship on average to lower-order moments.
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�w is to solve the following system of NM + 1 equations and unknowns.
1Z
0

h
k �
 ��
mw;1

i
P (k; �w)dk = 0

1Z
0

h
(k �

 ��
mw;1)2 �

 ��
mw;2

i
P (k; �w)dk = 0

� � �
1Z
0

h
(k �

 ��
mw;1)NM �

 ����
mw;NM

i
P (k; �w)dk = 0

1Z
0

P (k; �w)dk = 1

(11)

This is a non-linear system of equations and without additional restrictions on
P (k; �w), there are no algorithms with reliable convergence properties. It is fea-
sible to solve this system, but it required in our experience a lot of work in �nding
good initial conditions. By adopting a particular class of approximating polynomials
one can reduce this problem to a convex optimization problem for which convergence
is no longer problematic.
Our alternative procedure parameterizes the density with a regular polynomial,

but the basis functions are constructed in a speci�c way. In particular, the polyno-
mial of order NM is written as:

P (k; �w) =

�w0 exp

0BBBBB@
�w1

h
k �
 ��
mw;1

i
+

�w2

��
k �
 ��
mw;1

�2
�
 ��
mw;2

�
+ � � �+

�wNM

��
k �
 ��
mw;1

�NM � ����mw;NM

�
1CCCCCA :

(12)

When the density is constructed in this particular way, the coe¢ cients, except
for �w0 , can be found with the following minimization routine:

min
�w1 ;�

w
2 ;��� ;�wN

M

1Z
0

P (k; �w)dk: (13)

The �rst-order conditions correspond exactly to the �rst NM equations in (11). �w0
does not appear in these equations, but �w0 is determined by the condition that the
density integrates to one.
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The Hessian (times �w0 ) is given by

1Z
0

X
� ��
mw;1; � � � ;

 ����
mw;NM

�
X
� ��
mw;1; � � � ;

 ����
mw;NM

�0
P (k; �w)dk; (14)

where X is an (NM � 1) vector and the ith element is given by�
k �
 ��
mw;1

�
for i = 1�

k �
 ��
mw;1

�i
�
 ��
mw;i for i > 1

(15)

The Hessian is positive semi-de�nite sinceX does not depend on �w.15 Consequently,
this is a convex optimization problem. Our minimization routine (BFGS) does not
exploit the fact that this is a convex optimization problem. Even without exploiting
the convexity in the minimization routine we found that �nding a solution for �w

was an enormous improvement. Most importantly, it avoided the need for good
initial conditions. When using exponentials to parameterize the density and using
(11) to �nd the coe¢ cients, the algorithm often got stuck and had to be restarted
with better initial conditions. Even when good initial conditions were given then
the convex problem made it possible to �nd a solution much faster (even though the
minimization routine didn�t exploit the convexity).16

4.6 Procedure to solve for aggregate laws of motion

The procedure is characterized by the following steps.

� We construct a grid with values for a, a�1,
��!
mu;c
�1, and

 ��
mw;j for w 2 fe; ug and

j 2 f1; � � � ; NMg. Here
��!
mu;c
�1 is the fraction of unemployed agents that chose

k0 = 0 last period and
 ��
mw;j is the jth moment of the distribution of strictly

positive capital holdings for agents with employment status w. Given values
for a, a�1, and

��!
mu;c
�1; we can calculate

 ��
me;c and

 ��
mu;c. The grid values for this

period�s and last period�s aggregate state are the two possible realizations and

15Note that evaluated at the solution for �w, it is a covariance matrix.
16In particular, we tried �nding the coe¢ cients using standard exponentials, i.e., �0 exp(�1k +

�2k
2 + � � � ), and using our preferred functional forms. The best way to �nd the coe¢ cients of the

exponential� in our experience� is to solve (??) using a Newton procedure. As starting values we
used in both procedures the solution to a slightly perturbed set of values for the target moments.
With the Newton procedure it took on average 57 seconds to �nd the solution, whereas with our
preferred procedure it took on average 0.24 seconds, more than 200 times as fast.
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we use Chebyshev nodes to locate the grid points for the other state variables.
These are the "x-values".

� Using quadrature methods, we calculate end-of-period moments,
��!
mw;j for

j 2 fc; 1; � � � ; NMg; at each grid point. These are the "y-values". The pa-
rameterization of the cross-sectional distribution discussed in the last section
makes it possible to use Simpson quadrature to calculate end-of-period mo-
ments.

� Using the y-values and the x-values, we perform a projection step to �nd the
coe¢ cients of the approximating function,

�!
�en(s; 

�e
n ) and

�!
�un(s; 

�u
n ).

5 Simulating a panel with a non-random cross-
section

An important contribution of this paper is to develop a simulation procedure that
eliminates the amount of cross-sectional sampling variation in the simulation of a
panel. Simulations play a relatively minor role in the algorithm proposed here and
are only used to get information on the shape of the cross-sectional distribution. But
this simulation procedure can also be used in algorithms that rely on simulations
to determine the law of motion of the aggregate state variables, such as, the algo-
rithm used in Krusell and Smith (1998). This section discusses the new procedure.
Accuracy tests for this procedure are proposed in the next section.
The idea of the simulation procedure proposed is to stay close to the idea that

there is a continuum of agents in the model. This implies that� conditional on the
realization of the aggregate shock� there is no cross-sectional sampling variation
with our simulation procedure, just as there is none in the true solution. The
standard procedure in the literature uses a large but �nite number of agents, NN .
Since sampling variation only vanishes at rate

p
NN one may need a high value of

NN to get accurate moments and indeed quite high values are used in the literature
(between 10,000 and 100,000). Having an accurate procedure to simulate a cross-
sectional distribution is also useful if one is interested in a particular region of the
distribution. If the simulated series do not visit these regions freqeuntly then one
would not accurately describe what happens there even if the value of NN is high
enough to accurately describe the moments used as state variables.
The procedure works as follows

� Use a random number generator to draw a time series for the aggregate produc-
tivity shock, fatgNTt=0. Although the procedures eliminates the cross-sectional
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sampling variation, there is still sampling variation due to the stochastic nature
of the aggregate productivity shock.

� In period 1, the procedure starts with the following information. First, the
fractions of employed and unemployed agents with zero capital stock at the
beginning of the period,

 ��
me;c
1 , and

 ��
mu;c
1 . Second, NfM centralized moments

of the distribution of strictly positive beginning-of-period capital holdings for

the unemployed and the employed,
 ��
mw;j
1 for w 2 fe; ug and j 2 f1; � � � ; NfMg.

Since this procedure is relatively cheap and not part of a complex �xed-point
calculation one can set NfM fairly high. We set NfM = NM = 6, but these
parameters do not have to be equal to each other.

� The moments
 ��
mw;j
1 for w 2 fe; ug and j 2 f1; � � � ; NfMg determine the densities

of positive capital holdings for the employed and unemployed, P (k; �e1) and
P (k; �u1). That is, using the procedure discussed in Section 4.5, we �nd the
coe¢ cients of the densities in period 1, �e1 and �

u
1 , so that the moments of

P (k; �e1) and P (k; �
u
1) correspond to the speci�ed moments.

� Use P (k; �e1); P (k; �u1),
 ��
me;c
1 , and

 ��
mu;c
1 , i.e., the distribution of beginning-of-

period capital holdings together with the individual policy rules to calculate

the end-of-period moments,
��!
mw;j
1 for w 2 fe; ug and j 2 fc; 1; � � � ; NfMg, and��!

mu;c
1 . We use Simpson quadrature to do the integration.

� Use the values of the productivity shocks in period 1 and 2, i.e., a1 and a2,
together with the end-of-period moments for period 1 to calculate beginning-

of-period moments for period 2,
 ��
mw;j
2 and

 ��
mw;c
2 for w 2 fe; ug and j 2

fc; 1; � � � ; NfMg. Recall that this simply takes care of the e¤ects of changes
in the employment status on the cross-sectional distribution. Details are given
in Appendix A.1.

� Use the procedure discussed in 4.5 to �nd the values for �e2 and �u2 .

� Repeat the procedure for the next period until t = NT .

To ensure that the sample used to obtain information about the cross-sectional
distribution has reached (or is at least close to) its ergodic distribution one should
disregard an initial set of observations. For the particular model we study in this
paper, we found that if the initial distribution is not close to the ergodic set, then
one has to disregard a large number of initial observations, since it can take quite a
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while before the economy has reached the ergodic distribution. After some experi-
mentation, one has a good idea about a reasonable initial distribution and then this
is less of a problem.
For some policy functions, it may be the case that some higher-order moments of

the cross-sectional distribution do not exist or that higher-order moments are on an
explosive path. In our numerical procedure we integrate over a �nite range of capital
holdings so this problem cannot occur. To make sure that the numerical procedure
doesn�t hide diverging properties of the true model it is important to check whether
the results are robust to changing the upper bound of capital stock.

6 Results and accuracy

In this section, we discuss the accuracy of the aggregate policy function and the
parameterized cross-sectional distribution. We also discuss the accuracy of our sim-
ulation approach. Tests to check the accuracy of the individual policy function are
standard and these are discussed in A.3. Parameter settings of the numerical proce-
dure, such as the order of the polynomial and the number of grid points, are given
in A.2.

6.1 Parameter values

In the benchmark speci�cation, parameter values are taken from Krusell and Smith
(1998) and are reported in Tables 1 and 2. The discount rate, coe¢ cient of relative
risk aversion, share of capital in GDP, and the depreciation rate take on standard
values. Unemployed people are assumed to earn a �xed fraction of 15% of the
wage of the employed.17 The value of �a is equal to 0.01 so that productivity in a
boom, 1+�a, is two percent above the value of productivity in a recession, 1-�a.
Business cycles are symmetric and the expected duration of staying in the same
regime is eight quarters. The unemployment rate in a boom, ug, is equal to 4% and
the unemployment rate in a recession, ub, is equal to 10%. The time endowment,
l, is chosen to normalize total labor supply in the recession to one. The average
unemployment duration is 2.5 quarters conditional on staying in a recession and
equal to 1.5 quarters conditional on staying in a boom. These features correspond
with the transition probabilities reported in Table 2.

17This is the only change relative to Krusell and Smith (1998) who set � = 0. This has little
e¤ect on the properties of the model but avoids the possibility of agents having zero consumption.
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Table 1: Benchmark calibration
Parameters �  � � l � �a

Values 0:99 1 0:36 0:025 1=0:9 0:15 0:01

Table 2: Transition probabilities
s," / s0; "0 1-�a; 0 1-�a; 1 1+�a; 0 1+�a; 1
1-�a; 0 0.525 0.35 0.03125 0.09375
1-�a; 1 0.038889 0.836111 0.002083 0.122917
1+�a; 0 0.09375 0.03125 0.291667 0.583333
1+�a; 1 0.009155 0.115885 0.024306 0.850694

6.2 Aggregate policy function

In this section, we address the accuracy of the aggregate policy function. In Section
6.2.1, we establish the accuracy of the functional form taking the parameterization
of the cross-sectional distribution as given. In Section 6.2.2, we establish whether
more moments are needed as state variables. In Section 6.2.3, we describe a more
demanding accuracy test by taking a multi-period perspective.

6.2.1 Accuracy of functional form of aggregate policy function

The aggregate policy functions,
�!
�en(a; a�1;m; 

�e

n ) and
�!
�un(a; a�1;m; 

�u

n ) capture
the law of motion of the end-of-period values of the three moments that are used
as state variables. The approximation uses a tensor product polynomial with at
most �rst-order terms for a and a�1, since a can take on only two values, and up to
second-order terms for the elements of m.
Accuracy is evaluated using a grid of the aggregate state variables on which the

three variables with continuous support can take on a �ne range of values. In par-

ticular, f
 ��
me;1g = f35; 35:2; :::; 42:4g, f

 ��
mu;1g = f33:5; 33:7; :::; 41:5g, and f

��!
mu;c
�1g =

f0; 0:05%; :::; 0:2%g: At each grid point, we use the values of m and the reference
moments to obtain the corresponding density exactly as they are calculated in the
algorithm. Whether this parameterization of the cross-sectional distribution is ac-
curate will be discussed below. Using the parameterized density and the individual

policy function, we calculate
��!
mu;c,

��!
me;1, and

��!
mu;1: These explicitly calculated values

are compared with those generated by the approximations
�!
�e(s) and

�!
�u(s).

Table 3 reports for each of the three statistics the average and maximum absolute
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% error across this �ne set of grid points.18 The errors for the �rst-order moment
of the capital stock of the employed are small. The maximum error is 0.012%
and the average error is 0.0059%. The moments for the unemployed are somewhat
bigger, but still relatively small. In particular, the maximum error for the �rst-order
moment is equal to 0.92% and the average error is equal to 0.24%. This maximum

is attained when the value of
 ��
me;1 takes on the highest and

 ��
mu;1 the lowest grid

value, which is an unlikely if not impossible combination to occur. The average
and maximum error for

��!
mu;c are 0.2 and 0.84 percentage points (pp), respectively.19

There are two reasons why these two numbers are not problematic. First, given that
both the actual and the approximation predict very low fractions of agents at the
constraint, these errors are of no importance and it wouldn�t make sense to spend
computing time on improving the part of

�!
�u(s) that determines

��!
mu;c. Second, in

Section 6.2.3, we show using a simulation that the economy doesn�t get close to
points in the state space where such large errors are observed. In fact, using a
simulation of 1,000 periods we �nd an average error of 0.0076 percentage points and
a maximum error of 0.071 percentage points.

Table 3: Accuracy of functional form of aggregate policy function
Moment approximation error

average maximum
��!
me;1 5.9e-3% 1.2e-2%
��!
mu;1 2.4e-1% 9.2e-1%
��!
mu;c 2.0e-1pp 8.4e-1pp

6.2.2 Number of moments as state variables

The algorithm uses
��!
mu;c
�1,
 ��
me;1, and

 ��
mu;1 as state variables and in this section we

analyze whether additional moments should be used as state variables. That is,
conditional on staying within the class of cross-sectional distributions pinned down
by the reference moments does it make a di¤erence if additional moments are used as
state variables. In particular, we check whether changes in the second-order moment

18Since
��!
mu;c is a small number and already a percentage, we express the error for

��!
mu;c in terms

of percentage points di¤erence an not as a percentage.
19This maximum di¤erence for

��!
mu;c is also attained at the unlikely combination of a very high

value for
 ��
me;1 and very low value for

 ��
mu;1. At this grid point, the value from our approximation

is equal to 0.152% and the recalculated value is 0.996%.
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matter for the key set of moments the agents predict, i.e.,
��!
mu;c
�1,
 ��
me;1, and

 ��
mu;1. To

do this we calculate at each of the aggregate grid points
��!
mu;c,

��!
me;1, and

��!
mu;1 in

two di¤erent ways. First, when
 ��
me;2 and

 ��
mu;2 take on its reference values, i.e., the

average observed in the simulated series (conditional on the value of a). Second,

when
 ��
me;2 and

 ��
mu;2 take on the maximum values observed in the simulation, but

the values of
 ��
me;j, and

 ��
mu;j for j > 2 are still equal to the reference moments.

Table 4 reports for each of the three statistics the average and maximum absolute
% change across the grid points when the variance increases.

Table 4: E¤ect of increase in variance under reference distribution

Moment
average
change

maximum
change

��!
me;1 5.2e-3% 1.1e-1%
��!
mu;1 1.9e-1% 6.4e-1%
��!
mu;c 1.6e-1pp 5.8e-1pp

The e¤ect of the increase in the variance on
��!
me;1 and

��!
mu;1 is small, especially

considering that the increase in the variance is enormous. Again, the largest changes
occur at unlikely grid points and the changes for

��!
mu;c are larger. Of course, it is not

surprising that an increase in the variance has an e¤ect on the fraction of agents
choosing a zero capital stock, since the increase in the variance increases the fraction
of agents close to zero. Given the lack of importance of agents at the constraint, it
doesn�t make sense to add the second-order moment as a state variable.

6.2.3 Multi-period perspective

A word of caution is warranted in drawing conclusions about accuracy from the type
of one-period tests performed in the last two sections. The reason is that small errors
can accumulate over time if they do not average out. To investigate this issue we

compare values for
��!
me;1,

��!
mu;1, and

��!
mu;c generated by two di¤erent procedures. First,

we generate these statistics with our simulation procedure that explicitly integrates
over the choices made by the agents in the economy. This procedure does not use our
approximations

�!
�e(a; a�1;m) and

�!
�u(a; a�1;m). Second, we generate these statistics

using only our approximations
�!
�e(a; a�1;m) and

�!
�u(a; a�1;m). It is important to

point out that this second procedure only uses
�!
�e(a; a�1;m) and

�!
�u(a; a�1;m), and

involves nothing more than basic algebra. That is, the output of our aggregate law
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Figure 1:
��!
me;1 generated using the approximation

�!
�e(s) or the simulation on a

continuum of agents

of motion will be used as the input in the next period.20 This comparison, thus, is
truly a multi-period accuracy test.

The results for
��!
me;1,

��!
mu;1, and

��!
mu;c are plotted in Figures 1, 2, and 3 respec-

tively. The graphs make clear that our approximate aggregate laws of motion do a

magni�cent job of tracking the movements of
��!
me;1 and

��!
mu;1. In fact, one cannot

even distinguish the moments generated by
�!
�e(s) and

�!
�u(s) from the corresponding

moments generated by explicit integration over the individual policy rules. Some
di¤erences between the two procedures are visible for

��!
mu;c, but our approximate

aggregate laws of motion track the changes in
��!
mu;c well. As mentioned above, in

a sample of 1,000 observations the average and maximum absolute di¤erence are
0.0076 and 0.071 percentage points, respectively.

6.3 The parameterized cross-sectional distribution

Parameterization of the cross-sectional distribution with a �exible functional form
serves two objectives in our algorithm. First, it enables the algorithm to calculate
20After adjusting, of course, for the employment-status �ows.
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the aggregate laws of motion,
�!
�e(s) and

�!
�u(s), with standard projection techniques,

since with a parameterized density (i) next period�s moments can be calculated on a
prespeci�ed grid and (ii) next period�s moments can be calculated with quadrature
instead of the less e¢ cient Monte Carlo techniques. Second, it makes it possible to
simulate the economy without cross-sectional variation, which improves the proce-
dure to �nd the reference moments.
An accurate representation of the cross-sectional distribution may not be neces-

sary for an accurate solution of the model. What is needed for an accurate solution
of the model are accurate aggregate laws of motion,

�!
�e(s) and

�!
�u(s), since the agent

is only interested in predicting future prices and to determine these one does not
need the complete distribution, just the set of statistics that determine prices, that

is,
��!
mu;c
�1,
 ��
me;1, and

 ��
mu;1.

In this section, we take on the more demanding test to check whether the cross-
sectional parametrization, P (k; �e) and P (k; �u), are accurate. This is a more de-
manding test for the following reasons. First, it requires that all NM moments
used to pin down the distribution are accurately calculated instead of just the NM
moments that are used as state variables. More importantly, because the shape of
the cross-sectional distribution is endogenous and time-varying, the functional form
used must be �exible enough to capture the unknown and changing shapes.
To check the accuracy of our simulation procedure and, thus, the accuracy of

our parameterized densities, we do the following. We start in Section 6.3.1 with a
comparison between the simulated time path of moments generated by our parame-
terized densities, with those generated by a standard simulation using NN agents.
The alternative simulation is, of course, subject to sampling variation, but the ad-
vantage of the standard simulation procedure is that there is no functional restriction
on the cross-sectional distribution at all.
A second accuracy test consists of checking whether the results settle down if

NM increases. This is done in Section 6.3.2. The last accuracy test checks whether
moments of order higher than NM are calculated precisely.

6.3.1 Comparison between simulation procedures

In this section, we compare the moments generated by our new simulation approach
with those generated by the standard Monte Carlo simulation procedure. We re-
port Monte Carlo simulations with 10,000 agents and 100,000 agents.21 The same

21In our implementation of the simulation procedure we impose� as in Krusell and Smith
(1998)� that ut = ug (ub) when at = ag (ab). We also ensure that the �ows into and out of
(un)employment expressed as a fraction of the total population correspond to those one would �nd
with a continuum of agents. Our alternative simulation procedure uses a continuum of agents and
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individual policy function is used under the two approaches. We plot time paths
of generated moments when we impose the value of a to alternate deterministically
between 1��a and 1 + �a every 100 periods so that the behavior of the economy
during a transition between regimes becomes clear. A set of initial observations is
discarded so that e¤ects of the initial distribution are no longer present.22

Figure 4 reports the evolution of the end-of-period �rst moment of the employed��!
me;1. Note that the group of the employed is at least 9,000 (90,000) in the Monte
Carlo simulations with 10,000 agents (100,000 agents). Although the sampling varia-
tion is still visible in the graph with 10,000 agents, it is small relative to the observed
changes in the calculated moment. It has virtually disappeared in the simulation
with 100,000 agents.
Figures 5 shows the evolution of the-end-of period �rst-order moment of the

unemployed
��!
mu;1 . The number of observations in this group is much smaller,

amounting to 400 agents (4,000 agents) during recessions in the Monte Carlo sim-
ulation with 10,000 (100,000) agents. The sampling variation is substantial in the
simulation with 10,000 agents and is still visible in the simulation with 100,000
agents.
The e¤ect of sampling variation is very clear when we consider the fraction of

agents at the constraint
��!
mu;c, whose evolution is reported in Figure 6. In this

case, even the Monte Carlo simulation with 100,000 agents displays severe sampling
variation. The fraction of agents at the constraint is small, and the unemployed do
not own much capital. Any inaccuracy due to the high sampling variation is, thus,
likely to be inconsequential for the properties of any aggregate series.23

A good way to document the higher accuracy of the new simulation procedure
is to look at the transition from the bad regime (high unemployment rate) to the
good regime (low unemployment rate). The new simulation procedure clearly shows
a sharp increase in the fraction of agents at the constraint when the economy enters
the good regime. In contrast, for the standard simulation procedure this increase is
not always present and there are many other spikes. The true solution of the model
should exhibit such a spike. In this economy, employed agents become unemployed
every period. When the economy moves from the high-unemployment to the low-
unemployment regime, then the �ow out of employment into unemployment drops
sharply. This means that after the regime change, a smaller fraction of employed

automatically imposes the correct stocks and �ows.
22Details about the simulation procedure are given in Table 9.
23In this model with only two discrete possibilities for the employment status one could over-

sample the unemployed but this would be problematic to do if the states that occur less frequently
have continuous support.
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becomes unemployed every period, and thus an unemployed agent is much less likely
to have been employed the previous period. Consequently, after a change to the low-
unemployment regime, a larger fraction of unemployment agents will have a zero
capital stock.
To conclude, our new simulation procedure clearly is more accurate than stan-

dard Monte Carlo simulation procedures. However, for the current model the sim-
ulation procedure is accurate where it matters, namely in tracing the mean capital
stock of the employed.
Eventually, not only our proposed simulation method is more accurate than

Monte Carlo simulation, but it is also an order of magnitude faster. For instance,
Monte Carlo simulations over 3500 periods would take 1 hour and 6 minutes with
10,000 agents and seven hours and 40 minutes with 100,000 agents. In contrast, our
simulation procedure takes only 7 minutes for the same number of periods. 24

6.3.2 Increasing NM

In this paper, we use NM moments to characterize the cross-sectional distribution
andNM of these are state variables. In Section 6.2.2, we analyzed whether additional

24Using a 2.66 GHz Intel Core 2 Duo E6700 processor.
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moments are necessary as state variable. Here we address the question whether
increasing NM makes a di¤erence.
To check the importance of NM , we simulate an economy using di¤erent values

of NM to parameterize the cross section. We check when the results settle down.
The idea of the test is made clear in Figures ?? and ?? that plot the second and
sixth-order moment of the distribution for the unemployed for di¤erent values of
NM . The �gures make clear that NM has to be su¢ ciently high. When we increase
NM from 2 to 4 then the generated moments change enormously. A further increase
from 4 to 5 still causes some changes, but when we increase NM from 5 to 6 then
the changes are very minor.
Table 5 reports the results for all moments. It corroborates the results from the

�gures. Using a value of NM equal to 2 is clearly way too low to generate an accurate
set of moments. An increase in NM from 5 to 6, however, only causes minor changes

in the generated moments. For example, the average change for
 ��
me;2 is only 0.25%

and the average change for
 ��
mu;2 is equally small. The average (maximum) change

for
 ��
me;6 and

 ��
mu;6 are equal to 2.3% (3.7%) and 2.4% (3.7%), respectively. These

are, thus, somewhat, higher, but as made clear in the graph, these errors are low
relative to the observed variation in the moments.

Table 5: The e¤ect of increasing NM
Moment % change relative to NM = 6

average maximum
NM = 2 NM = 4 NM = 5 NM = 2 NM = 4 NM = 5

 ��
me;2 32.9% 2.5% 0.25% 35.9% 2.8% 0.54%
 ��
me;3 90.2% 12.5% 1.5% 95.1% 14.5% 2.4%
 ��
me;4 60.2% 6.5% 1.4% 63.6% 7.9% 2.2%
 ��
me;5 90.6% 9.7% 2.4% 95.0% 14/-% 3.5%
 ��
me;6 78.0% 7.1% 2.3% 80.9% 12.1% 3.7%
 ��
mu;2 32.2% 2.4% 0.25% 36.0% 2.8% 0.55%
 ��
mu;3 91.9% 12.6% 1.5% 95.5% 14.6% 2.4%
 ��
mu;4 60.3% 6.6% 1.4% 63.6% 7.9% 2.2%
 ��
mu;5 92.0% 9.2% 2.4% 95.4% 13.1% 3.5%
 ��
mu;6 78.0% 6.7% 2.4% 80.8% 11.2% 3.7%
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6.3.3 The shape of the distribution

There are two aspects to our approximation of the cross-sectional distribution. First,
the class of functions used and second the value of NM . The coe¢ cients are chosen
so that the �rst NM moments are correct. But higher-order moments are implied by
the values of the �rst NM moments and the class of functions chosen. For example,
when one uses a normal distribution, then one can impose any mean and variance,
but skewness and kurtosis are no free parameters.
So for any �nite value of NM , the class of approximating polynomials used, thus,

imposes certain restrictions on the function form. Here we check those restrictions
along a simulated time path by comparing the jth-order moments for j > NM

implied by the parameterized cross-section with those calculated by integration of
the individual�s policy function.
In particular, we do the following. Draw a long time series for the aggregate

productivity shock, a. Let �e1 and �
w
1 be the parameters of the cross-sectional dis-

tribution in the �rst period and let
 ��
me;c
1 and

 ��
mu;c
1 be the fraction of employed and

unemployed agents with zero capital holdings at the beginning of the period. With
this information, we calculate the end-of-period values of the �rst NM moments.25

��!
mw;1
1 =

1Z
0

k("w;k; s) P (k; �w1 )dk; w 2 fe; ug: (16)

��!
mw;j
1 =

1Z
0

�
k("w;k; s)�

��!
mw;1
1

�j
P (k; �w1 )dk; 1 < j � NM ; w 2 fe; ug: (17)

In exactly the same way, we calculate higher-order moments. That is,

��!
mw;j
1 =

1Z
0

�
k("w;k; s)�

��!
mw;1
1

�j
P (k; �w1 )dk; j > NM ; w 2 fe; ug: (18)

Now we check whether these higher-order moments (j > NM) are similar to the mo-
ments implied by the parameterized cross-sectional distribution. To do this, we use
the �rst NM end-of-period moments to calculate the coe¢ cients of the corresponding

25By indicating in bold the variable that we are integrating over, we make clear that we are
integrating over the argument of the policy function not the outcome of the policy function.
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approximating density,
�!
�e1 and

�!
�u1 . Next, we calculate higher-order moments implied

by this parameterized cross-sectional density. That is,

�!
=j1 =

1Z
0

�
k �
��!
mw;1
1

�j
P (k;

�!
�w1 )dk; j > NM ; w 2 fe; ug: (19)

If the shape of the cross-sectional distribution is not too restrictive, then the implied
higher-order moments correspond to the explicitly calculated higher-order moments.
We perform this exercise using values for NM equal to 2 and 6 and then calculate

the average and maximum error observed along the simulation of 2,000 observations
with the error term de�ned as follows:26��� ��=w;n � ��mw;n

���
 ��
mw;n

:

Table 6: Implied and actual higher-order moments; NM = 2
NM= 2 Employed Unemployed
Error (%) Average Max Average Max��� ���=w;3� ���mw;3

���
 ���
mw;3

5.6% 9.1% 7.0% 15.3%��� ���=w;4� ���mw;4
���

 ���
mw;4

2.8E-1% 3.2E-1% 2.1E-1% 6.4E-1%��� ���=w;5� ���mw;5
���

 ���
mw;5

4.7% 7.5% 5.6% 11.7%��� ���=w;6� ���mw;6
���

 ���
mw;6

5.7E-1% 7.5E-1% 9.3E-1% 2.6%��� ���=w;7� ���mw;7
���

 ���
mw;7

3.7% 6.1% 5.3% 10.3%��� ���=w;8� ���mw;8
���

 ���
mw;8

6.5E-1 1.2% 2.3% 5.7%��� ���=w;9� ���mw;9
���

 ���
mw;9

2.9% 5.0% 5.6% 10.3%��� ���=w;10�
 ����
mw;10

���
 ����
mw;10

5.6E-1% 1.7% 4.0% 9.2%

26Note that the accuracy measure is actually de�ned for beginning-of-period moments, but this
is simply a transformation of end-of-period values taking into consideration the change in the
employment status.
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Table 7: Implied and actual higher-order moments; NM = 6
NM= 6 Employed Unemployed
Error (%) Average Max Average Max��� ���=w;7� ���mw;7

���
 ���
mw;7

2.8E-2% 7.3E-1% 1.0E-1% 2.2E-1%��� ���=w;8� ���mw;8
���

 ���
mw;8

4.3E-2% 1.0E-1% 1.8E-1% 4.3E-1%��� ���=w;9� ���mw;9
���

 ���
mw;9

9.3E-2% 2.3E-1% 3.8E-1% 8.8E-1%��� ���=w;10�
 ����
mw;10

���
 ����
mw;10

1.3E-1% 3.1E-1% 5.6E-1% 1.3%

Tables 6 and 7 report the errors for NM = 2 and NM = 6; respectively. When
NM is equal to 2, then observed error terms are large for the odd-numbered mo-
ments. That is, the shape of the distribution implied by our class of approximating
functions doesn�t capture the correct shape of the distribution when a second-order
approximation is used. The results are much better when NM is equal to 6. Now we
observe much smaller errors. The largest errors are for the 10-th order moment of
the capital stock of the unemployed. For this moment, the maximum error is 1.3%,
which is not excessively high.

7 Concluding comments

In this paper, we have developed a new algorithm to solve models with heteroge-
neous agents and aggregate uncertainty. We used the algorithm to solve the model
in Krusell and Smith (1998) and found our numerical solution to have similar prop-
erties to the one obtained with simulation procedures. The ability to obtain similar
numerical outcomes with quite di¤erent algorithms builds con�dence in the results.
Accuracy tests, of course, can do the same but they also have its limits, especially in
high-dimensional models.27 The models the profession will consider in the future are
likely to become more complex. Since di¤erent algorithms have di¤erent strenghts
and weaknesses it is important to have a variety of algortithms to choose from.
This paper helps to create a richer portfolio of algorithms to solve these complex
models especially because the building blocks used are so di¤erent from the popular
alternative.
27In particular, small errors that accumulate over time to non-trivial magnitudes may be hard

to detect.
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A Appendix

A.1 Details on Transition equations

This appendix describes how the change in employment status that occurs at the
beginning of each period a¤ects the moments of the cross-sectional distribution. Al-
though, we use centralized moments as state variables, we actually do not use cen-
tralized moments here. It is easier to �rst do the transformation for non-centralized
moments and then calculate the centralized moments.

From beginning to end-of-period. Let ga;w be the mass of agents with employ-
ment status w when the economy is in regime a. At the beginning of the period we
have to following groups of agents:

1. Unemployed with k = 0, whose mass is equal to
 ��
mu;cga;u

2. Unemployed with k > 0, whose mass is equal to
�
1� ��mu;c

�
ga;u

3. Employed with k = 0, whose mass is equal to
 ��
me;cga;e

4. Employed with k > 0, whose mass is equal to
�
1� ��me;c

�
ga;e

Agents in group #1 choose k0 = 0, while agents in group #2 either set k0 = 0
or k0 > 0. Let the fraction of agents that set k0 = 0 be equal to �k

0=0
u;k>0. Thus, the

fraction of unemployed agents that set k0 = 0, is equal to

��!
mu;c =

 ��
mu;c + �k

0=0
u;k>0(1�

 ��
mu;c):

The ith moment of the capital stock chosen by agents in group #2 is equal to

�k
0�0;i
u;k>0 = �k

0=0
u;k>0 � 0i + (1� �k

0=0
u;k>0)�

��!
mu;i:

Thus,

��!
mu;i =

�k
0�0;i
u;k>0

(1� �k0=0u;k>0)

where �k
0�0;i
u;k>0 =

R +1
0

k(0; k; s)iP (k; �u)dk.
��!
me;c = 0, since employed agents never choose a zero capital stock. To calculate��!

me;i, we need the (mean of the) capital stock chosen by those in group #3, i.e.,

32



�k
0>0;i
e;k=0 = k(1; 0; s)i;

and the mean of the capital stock chosen by those in group 4, i.e.,

�k
0>0;i
e;k>0 =

Z +1

0

k(e; k; s)iP (k; �e)dk:

Weighting the two means gives

��!
me;i =

 ��
me;c�k

0>0;i
e;k=0 + (1�

 ��
me;c)�k

0>0;i
e;k>0

 ��
me;c + (1� ��me;c)

From end-of-period to beginning of next period. At the end of the current
period, we have to following groups of agents:

1. Unemployed with k0 = 0, whose mass is equal to
��!
mu;cga;u

2. Unemployed with k0 > 0, whose mass is equal to (1���!mu;c)ga;u

3. Employed with k0 > 0, whose mass is equal to ga;e

gww0;aa0 stands the mass of agents with employment status w that have employ-
ment status w0 in the next period period, conditional on the values of a and a0. For
all combinations of a and a0 we have,

guu;aa0 + geu;aa0 + gue;aa0 + gee;aa0 = 1:

The number of agents with k0 = 0 as a fraction of all agents that are unemployed
in the following period is equal to

 ��
mu;c0 =

guu;aa0

guu;aa0 + geu;aa0

��!
mu;c:

and the fraction of all employed agents at the constraint is equal to

 ��
me;c0 =

gue;aa0

gue;aa0 + gee;aa0

��!
mu;c

Next period�s ith-order moments of the distributions with strictly positive capital
holdings are equal to
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 ��
mu;i0 =

guu;aa0(1�
��!
mu;c)

��!
mu;i + geu;aa0

��!
me;i

guu;aa0(1�
��!
mu;c) + geu;aa0

and
 ��
me;i0 =

gue;aa0(1�
��!
mu;c)

��!
mu;i + gee;aa0

��!
me;i

gue;aa0(1�
��!
mu;c) + gee;aa0

A.2 Parameters of numerical procedure

Tables 8 and 9 report the parameter settings used in implementing the numerical
procedure.

Table 8: Construction of the grid

State variables k; "; a�1; a;
��!
mu;c
�1;
 ��
me;1;

 ��
mu;1

Number of grid points
Mk = 50;M���!mu;c

�1
= 5; M ��

me;1 = 5;M ���mu;1 = 5

M" =Ma =Ma�1 = 2

range of values

k : [0; 99]
M���!
mu;c
�1
: [0; 0:002]

M ��
me;1 : [35; 42:4]

M ���
mu;1 : [33:5; 41:5]

location of points Chebyshev nodes

Table 9: Simulation procedure

Number of agents
Non-random cross-section: 1

Monte-Carlo: 10,000 or 100,000 agents
Number of periods 3,500 (�rst 1,000 discarded)
Initial distribution Stationary distribution in the bad state
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A.3 Accuracy of individual policy function

In this section, we discuss the accuracy of the numerical solution for the individual
policy function, taking as given the transition laws for the cross-sectional distribu-
tion. We check the accuracy of our policy function using a grid of capital holdings
that is much more dense than the one used to obtain the numerical solution and the
grid points for the aggregate state variables. In particular, we use k={0, 0.1, 0.2,
� � � , 99}. At each grid point, we �rst calculate the consumption level implied by the
numerical approximation, i.e., capp, and next period�s capital.
Next, we calculate the conditional expectation, not by using the approximation,

but by explicit (numerical) integration of �c0�(r0 + 1 � �) over the possible real-
izations of a0 and "0. The numerical approximation for the policy function is used
to evaluate next period�s consumption values for the di¤erent realizations of the
idiosyncratic and aggregate random variable. Let c be the current-period value of
consumption implied by the explicitly calculated conditional expectation on that
grid point. Accuracy is measured using jc � cappj=capp. We calculate the average
and the maximum across these approximation errors. Table 10 reports the average
across aggregate grid points and the maximum. Even the maximum errors are small
for most grid points. The average of the maximum errors for the unemployed is
equal to 0.67%. For the employed errors are substantially smaller.

Table 10: Euler equation error
Unemployed Employed

average maximum average maximum
0.17% 5.9% 0.15% 1.1%

The maximum percentage error for the unemployed is equal to 5.9%. Such a
maximum error is high, but it occurs when consumption takes on a value that is low
even for an unemployed agent, namely 0.690 according to our approximation and
0.651 according to the explicitly calculated conditional expectation.28
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