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Endogenous Preferences in Games with Type Indeterminate Players

A. Lambert-Mogiliansky∗†
Paris School of Economics

Abstract

The Type Indeterminacy model is a theoretical framework
that uses some elements of quantum formalism to model the
constructive preference perspective suggested by Kahneman
and Tversky. In this paper we extend the TI-model from
simple to strategic decision-making and show that TI-games
open a new field of strategic interaction. We first establish
an equivalence result between static games of incomplete in-
formation and static TI-games. We next develop a new so-
lution concept for non-commuting dynamic TI-games. The
updating rule captures the novelty brought about by Type In-
determinacy namely that in addition to affecting information
and payoffs, the action of a player impacts on the profile of
types. We provide an example showing that TI-game predic-
tions cannot be obtained as Bayes Nash equilibrium of the
corresponding classical game.
Keywords: type indeterminacy, games, endogeneous prefer-
ences

1 Introduction

This paper belongs to a very recent and rapidly growing lit-
erature where formal tools of Quantum Mechanics are pro-
posed to explain a variety of behavioral anomalies in social
sciences and in psychology (see e.g., Deutsch (1999), Buse-
meyer et al. (2006, 2007, 2008), Danilov et al. (2008),
Franco (2007), Danilov et al. (2008), Khrennikov (2010),
Lambert-Mogiliansky et al. (2009)). The founders of QM,
including Bohr (1993) and Heisenberg (2000) early recog-
nized the similarities between Physics and Social Sciences.
In particular Bohr was much influenced by the philosophy of
knowledge of Harald Höffding. The similarity stems from
the fact that in both fields the object of investigation can-
not (always) be separated from the process of investigation.
Quantum Mechanics and in particular its mathematical for-
malism was developed to respond to that epistemological
challenge(see the introduction in Bitbol (2009) for a enlight-
ening presentation).

The use of quantum formalism in game theory was ini-
tiated by Eisert et al. (1999) who study how the extension
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of classical moves to quantum ones can affect the analysis
of a game. Another example is La Mura (2005) who inves-
tigates correlated equilibria with quantum signals in clas-
sical games. Our approach is different from the so-called
quantum game approach. It is based on the idea that play-
ers’ preferences (types) (rather than the strategies they can
choose) can feature non-classical (quantum) properties. This
idea is formalized in the Type Indeterminacy (TI) model of
decision-making introduced by Lambert-Mogiliansky, Za-
mir and Zwirn (2009).

A main interest with TI-game is that the TI-hypothesis ex-
tends the field of strategic interactions. The chosen actions
impact not only on the payoffs of other players but also on
the profile of types of the players i.e., who the players are.
In a TI-model, players do not have a deterministic, exoge-
nously given, type (preferences). The types change along
the game together with the decisions made in the Game Sit-
uations1 (which are modelled as measurements of the type).
The players’ type are endogenous to the game.

This paper follows an introduction to TI-games in Buse-
meyer et al. (2009) where we show how the TI approach can
provide an explanation to why cheap-talk promises matter
appealing to the quantum indeterminacy of players’ type.2
In the present paper we go a step further by investigating
how players can ”exploit” the type indeterminacy of their
opponent. More precisely, we want to model how people
can influence a partner or an opponent with respect to what
she actually wants to do, i.e., with respect to her taste or
preferences (see Feldman 1988). In TI-games, preferences
are intrinsically indeterminate. A pre-play or a node from
which to move may therefore either increase or decrease the
ex-ante probability for a specific move in the future.

This idea is captured in the following example that we in-
vestigate in details in Section 3. Alice wants Bob to agree
to cooperate with her in a new project. Bob is indetermi-
nate with respect to his willingness to engage in this project
which appeals to open-mindedness. Bob is also indetermi-
nate with respect to his taste for personal challenges.3 Alice

1Game Situations are situations where the players must choose
an action in a strategic context. In TI-games, they are modelled as
operators.

2Cheap talk promises are costless to break. Therefore, standard
theory tells us that they (often) do not affect behavior.

3Open-mindedness and taste for personnal challenge are not the
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is Bob’s boss. She gives him legal cases to prepare. She
has the choice between two tasks: either a standard dispute
or a more intricate one. The standard dispute is best han-
dled routinely. The intricate case can be treated as a routine
job too. But Bob can also adopt a non-standard inventive
approach which is personally challenging. Alice would like
him to handle the intricate dispute but she understands that
this may affect his attitude toward the project. She knows
that indeterminacy with respect to personal challenges in-
crease the chance that he accepts to cooperate. Therefore
because she mostly cares about the project and although she
would clearly prefer him to prepare the intricate case, she
asks him to handle a simple standard dispute.

From a formal point of view the one single novelty com-
pared with the standard approach, is that we substitute the
Harsanyi type space with a Hilbert space of types. We find
that much of conventional game theory can be maintained.
The first novel results appear in multi-stage non-commuting
games and they are linked to updating. We formulate an up-
dating rule consistent with the algebraic structure of the type
space of TI-games. We show that this rule gives new con-
tent (beyond the informational one) to pooling respectively
separating behavior. We define a TI-Nash equilibrium and
demonstrate in an example that the set of Bayes Nash equi-
libria and TI-Nash equilibria do not coincide.

The paper is organized as follows. In Section 2 we in-
troduce static games of maximal information and establish
an equivalence result. In Section 3 we move to dynamic
TI-games and investigate our lead example. We formulate
the concept of TI Nash equilibrium and show how it relates
to the Bayes Nash equilibrium concept. We end with some
concluding remarks.

2 Static TI-games of maximal information

In the TI-model a simple ”decision situation” is represented
by an observable4 called a DS. A decision-maker is repre-
sented by his state or type. A type is a vector |ti〉 in a Hilbert
space. The measurement of the observable corresponds to
the act of choosing. Its outcome, the chosen item, actu-
alizes an eigentype5 of the observable (or a superposition6

of eigentypes if the measurement is coarse). It is informa-
tion about the preferences (type) of the agent. For a detailed
exposition of the TI-model see Lambert-Mogiliansky et al.
(2009). How does this simple scheme change when we are
dealing with strategic decision-making?

We denote by GS (for Game Situation) an observable that
measures the type of an agent in a strategic situation, i.e.,
in a situation where the outcome of the choice, in terms of

same psychological features but they are somehow related.
4An observable is a linear operator that operates on the state of

a system.
5The eigentypes are the types associate with the eigenvalues of

the observable i.e., the possible outcomes of the measurement of
the DS.

6A superposition is a linear combination of the formP
λi |ti〉 ;

P
λ2

i = 1 where the ti are possible states/types of
the players.

the agent’s utility, depends on the choice of other agents as
well. The interpretation of the outcome of the measurement
is that the chosen action is a best reply against the oppo-
nents’ expected action.7 This interpretation parallels the one
in the simple decision context. As in standard game theory
the chosen move is information about the type of the player
modulo equilibrium reasoning. We say that a GS measures a
type characteristics and it changes his type i.e., its outcome
actualizes some (superposition of) eigentype(s) .

Types and eigentypes
We use the term type as the term quantum pure state. A

(pure) type |t〉 ∈ T
8 where T is a (finite dimensional) Hilbert

space, is maximal information about the player i.e., about his
payoff function. Generally, the (Harsanyi) type includes a
player’s information and beliefs. But in this paper we let the
term type exclusively refer to the payoff function (or pref-
erences). We shall be dealing with TI-games of maximal
information where all players are represented by pure types
and there is no uncertainty related to the state of the world.
The only uncertainty that we consider is related to the play-
ers’ type because an opponent’s pure type is probabilistic
information about his eigentypes (see below).

In a TI-game we also speak about the eigentypes of a
game M, ei (M) ∈ E (M) , E (M) ⊂ T. The term eigen-
type parallels the term eigenstate of a system in Physics. An
eigentype is the type associated with one of the possible out-
comes of a GS (or more correctly of a complete set of com-
muting GS associated with a game).9 The eigentypes are
truly complete information about the payoff functions in a
specific static game M . Any eigentype of a player knows
his own M -game payoff function but he may not know that
of the other players.

The classical Harsanyi approach to uncertainty about oth-
ers’ payoff only uses a single concept, i.e., that of type and
it is identified both with the payoff function and with the
player. In any specific TI-game M, we must distinguish be-
tween the type which is identified with the player and the
eigentypes (of M ) which are identified with the payoff func-
tions in game M . A helpful analogy is with multiple-selves
models (see e.g., Strotz (1956) and Fudenberg and Levine,
(2006)).10

7The notion of ”actualized best-reply” is problematic however.
A main issue here is that a best-reply is a response to an expected
play. When the expected play involves subjective beliefs there may
be a problem as to the observability of the preferences. This is in
particular so if subjective beliefs are quantum properties. But in the
context of maximal information games (see below for precise defi-
nition) probabilities are objective which secures that the actualized
best-reply is well-defined.

8We use Dirac ket notation |.〉 to denote a vector in a Hilbert
space.

9A GS corresponds to a specific strategic decision situation. A
complete set of commuting GS provides information about a type’s
behavior for any possible play of any opponent. It is complete
description of his preferences in this game and we identify it with
a payoff function.

10In multiple-selves models, we are most often dealing with two
”levels of identity”: the short-run impulsive selves and a long-run
”rational self”. In our context we have two levels as well: the level
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In a maximal information TI-game the initial type of
the players are pure types (i.e., no probabilistic mixture)
and they are common knowledge among players. For any
static game M, a type ti can be expressed in terms of the
eigentypes |ei (M)〉 ∈ E (M) ⊂ T, with |ei(M)〉 ⊥
|ej(M)〉 , i �= j. An eigentype is information about the
value of (all) the type characteristics relevant to a partic-
ular game. Consider a multi-move game: M followed by
N , the TI-model allows for the case when the type charac-
teristics relevant to M respective N are ”incompatible” in
the sense that they cannot be revealed (actualized) simulta-
neously.11 This is the source of intrinsic indeterminacy i.e.,
of an uncertainty not due to incomplete information. The
classical Bayes-Harsanyi model corresponds to the special
case of the TI-model when all GS commute or equivalently
all type characteristics are compatible.

Assumption 1

In a TI-game all strategic reasoning is done by the eigen-
types of the players.

This key assumption is not as demanding as it may at first
appear. Indeed we are used in standard game theory to the
assumption that players are able to put themselves ”in the
skin” of other players (and thus other types) to think out
how those will play in order to be able to best-respond to
that. In fact is is fully equilavent to the ex-ante approach in
Bayesian games.

2.1 TI-Nash equilibrium in static games

Under Assumption 1, the eigentypes are the ”real players”
and we shall see that under this assumption a static TI-
game looks very much like a classical incomplete informa-
tion game.

Let Aj be a finite set of actions available to player j =
1, 2. Each player is represented by his type |tj〉 ∈ T. For any
game situation M we have Ej (M) ⊂ T, where Ej (M) ={∣∣∣ej

1 (M)
〉

, ...,
∣∣∣ej

k (M)
〉}

is the set of eigentypes of player
j in GS M. In the static context of this section we can delete
the qualifier in parenthesis and write

∣∣∣ej
1

〉
and Ej . A pure

strategy for player 1 is a function s1 ∈ S1, s1 : E1 → A1.
The initial type vector of player j = 1 can be expressed

in terms of the eigentypes of M:

|t1〉 =
k∑

i=1

λi

∣∣e1
i

〉
,

k∑
1

λ2
i = 1. (1)

The initial common knowledge beliefs about the eigentypes
are given by the types |tj〉 according to Born’s rule

prob
(
ei
1

∣∣ |t1〉) = λ2
i .

of the player (the type) and the level of the selves (the eigentypes)
which are to be viewed as potential incarnations of the player in a
specific game.

11The tensor product set E (M) ⊗ E (N) does not exist when
M and N are incompatible.

We call ei
1 a potential eigentype of player 1 iff λi > 0.12

In the Bayes-Harsanyi model, Nature moves first and se-
lects the type of each player who is privately informed about
it.13 In a TI-game uncertainty is (partially) resolved by the
measurement i.e., the actual act of playing. But each one of
a player selves (we use the terms self and eigentype inter-
changeably) knows his own payoff function. The potential
selves of a player all have the same information about the
opponent’s type. Now if the selves know the strategy of
the eigentypes of their opponent,14 they can compute their
expected payoff using the information encapsulated in the
(superposed) initial type of his opponent.

Definition 1 A pure strategy TI-Nash equilibrium of a two-
player static game M with initial types |t1〉 =

∑
λi

∣∣e1
i

〉
and |t2〉 =

∑
γi

∣∣e2
i

〉
is

i. A profile of pure strategies (s∗1, s
∗
2) with

s∗1
(
e1
i

)
= arg max

s′
1.∈S1

∑
e2

i

γ2
i ui

(
s′1, s

∗
2

(
e2
i

)
,
(
e1
i , e

2
i

))

for all e1
i ; λi �= 0, i = 1, ..k and similarly for player 2.

ii. A corresponding profile of resulting types (t′1, t
′
2),

| t′1| ai〉=
∑

ei;s∗
1(e1

i )=a1
i

λ′
i

∣∣e1
i

〉

where λ′
i = λiqP

j �=i λ2
j(s∗

1(e1
j)=a1

i )
and ai is the action

played by player 1. Similarly for
∣∣ t′2| a2

i

〉
.

The first part (i) says that each of the potential eigentypes
of each player maximizes his expected utility given the (su-
perposed) type of his opponent and the strategies played by
the opponent’s potential eigentypes. It is very similar to the
definition of a Bayesian equilibrium strategy profile except
that the probabilities for the opponent’s eigentypes are given
by the initial superposed type instead of a joint probability
distribution.

The second part of the definition (ii) captures the fact that
in a TI-game the players’ type is modified by their play. The
rule governing the change in the type is given by the von
Neuman-Luder’s projection postulate. As well known for
one single measurement, it is equivalent to Bayesian updat-
ing i.e., within the set Ej (M).

Proposition 1 A pure strategy TI-Nash equilibrium profile
of a static maximal information game M with eigentypes
(e1, .., ek) and initial types

∣∣∣tji〉 =
∑k

i=1 λj
i

∣∣∣ej
i

〉
, j =

12We note that this is equivalent to an incomplete information
representation with player 2′s initial beliefs about 1 given by

p
`
e1

i

˛̨
e2

j

´
= λ2

i for all ej ∈ E2.

13Se Fudenberg and Tirole (1991) for a definition of incomplete
information games.

14That is they can compute the equilibrium behavior of all other
selves.
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1, 2, is equivalent to a Bayesian pure strategy Nash equilib-
rium profile of a game with type space E = {e1, .., ek} and
common prior beliefs given by the distributions p (ei| t1) =(
λ1

i

)2
, p

(
e2
i

∣∣ t2) =
(
λ2

i

)2
.

The proof follows immediately from the definitions.

3 Multi-stage TI-game

When it comes to games composed of more than one step for
at least one player, the crucial issue for TI-games is whether
the corresponding GS commute with each other or not.

Commutativity of GS We say that two GS
M and N commute if they share a common set of
eigentypes E = E (M) ⊗ E (N). This is the standard
definition of commuting observables.

Definition
A commuting multi-stage TI-game is such that for each

player all the GS he may face (in and out of the equilibrium
path) commute with each other. Otherwise we say that the
multi-stage game is non-commuting.

If there is no observation between two commuting moves
we can merge the two GS into one compound GS with
outcome set (ai (M) , ai (N)) and the static TI-equilibrium
concept applies.

3.1 Multi-move games with observed actions

We noted above that commuting multi-stage TI-games with-
out observation are not distinguishable from static TI-game
both of which are equivalent to static incomplete informa-
tion games. This result extends further to commuting dy-
namic games with observed action. This follows directly
from a general result proving the equivalence between the
quantum and the classical models with respect to the predic-
tions in a context where all measurements are commuting
(see e.g., Danilov et al. (2008) for a derivation of this result
in a Social Sciences context).

Non-commuting multi-stage TI-games: strategic manip-
ulation of players’ type We are interested in multi-stage
game with observed actions where in each period t the play-
ers simultaneously choose their action which are revealed
at the end of the period.15 A simple case of a multi-move
game with observation is in next-following example which
captures the story we gave in the introduction.

Example We have 2 players, Alice and Bob and the fol-
lowing sequence of moves:

stage 1
- Alice chooses between Standard task (S) or Intricate task

(I) and
- Bob observes Alice’s choice and chooses between Stan-

dard treatment (S) and Inventive treatment (I). We refer to
this game situation as GS1.

stage 2

15We adopt the convention that simultaneous move games in-
clude games where the players move in alternation, that is simply
we allow for nul moves.

- Alice invites Bob to join her new project.
- Bob chooses between Accept(A) or Reject(R) the invi-

tation which ends the game. We refer to this game situation
as GS2.

Alice is of known eigentype with preferences described
below. Bob is indeterminate with respect to the eigentypes
relevant to GS1: E1 = {θ1, θ2} with

θ1 : always prefers to do the Standard treatment of any
task.

θ2 : enjoys challenges and can exert inventive effort if he
finds it worthwhile.16

Bob’s initial type is
|tB〉 = λ1 |θ1〉 + λ2 |θ2B〉

We set λ1 =
√

.6, λ2 =
√

.4.
We next assume that Bob’s preferences between Accept

and Reject depend only on Bob’s type i.e., not on the his-
tory of play. GS2 is a simple decision situation, a DS (see
Lambert-Mogiliansky et al. 2009). We consider two deci-
sion types: τ1 who is open-minded and Accepts the invita-
tion and τ2 who is conservative and Rejects. We assume that
GS1 is an operator that does not commute with GS2 which
means that Bob’s eigentype θi can be expressed in terms of
the τi:

|θ1〉 = α1 |τ1〉 + α2 |τ2〉 (2)
|θ2〉 = β1 |τ1〉 + β2 |τ2〉

And let α1 =
√

.4, β1 =
√

.6, α2 =
√

.6, β2 = −√
.4.

Alice’s payoff depends critically on Bob’s moves at both
stages. In particular Alice’s payoff is zero if Bob plays R at
stage 2. If Bob plays A, Alice’s payoff depends on her own
choice as well. If she asks to handle the intricate case her
payoff is 170 if Bob choose the inventive effort and is 120
if Bob handles the (intricate) case as a routine job. If she
chooses the standard case, her payoff is 100 whenever Bob
plays A. With this payoff structure Alice badly needs Bob to
play A at stage 2 and she prefers him to handle the intricate
case at stage 1.

In the TI-Nash equilibrium that we exhibit Alice asks Bob
to handle the Standard case even though she prefers him to
hand the Intricate case. The reason is that she has an in-
centive to manipulate Bob’s type to increase the probabil-
ity for his acceptance to cooperate. More specifically Al-
ice’s realizes that if she plays S, the θ2 of Bob will choose
S and will pool with θ1 (who always choose S). The re-
sulting type of Bob is then the same as his initial type,
indeterminacy (between θ1 and θ2) has not been resolved:∣∣∣t′B〉

= λ1 |θ1〉 + λ2 |θ2〉 = |tB〉 . This implies (by Born’s

rule) an ex-ante probability17 for the play of A equal to
prob(A) = λ2

1α
2
1 + λ2

2β
2
1 + 2λ1α1λ2β1 = .96

16When the case is intricate, θ2 enjoys exerting the inventing
effort.

17This obtains from substituting the θs in Bob’s type
vector using (??): |tB〉 = λ1 (α1 |τ1〉 + α2 |τ2〉) +
λ2 (β1 |τ1〉 + β2 |τ2〉) =

=(λ1α1 + λ2β1) |τ1〉 + (λ1α2 + λ2β2) |τ2〉 .
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Figure 1:

This should be contrasted with the probability for A that ob-
tains when Alice plays I. In that case Bob’s θ2 best-replies
by playing I thus separating from θ1. Bob’s resulting type
from his play in GS1 is |t′B〉 = |θ1〉 with probability λ2

1
and |t′B〉 = |θ2〉 with probability λ2

2. This yields an ex-ante
probability for A

Prob (A) = λ2
1α

2
1 + λ2

2β
2
1 = (.6 × .4) + (.4 × .6) = .48

In our numerical example Alice’s ex-ante expected payoff
when playing I is 0.24 × 120 + 0.24 × 170 = 69, 6 while
when she play S her payoff is 0.96 × 100 = 96 > 69, 6.
Note that in our example the interference term is positive. A
psychological interpretation is as follows: both the type who
likes personal challenges θ1 and the one who dislikes them,
θ2, are open to new ideas. The first because novelties have
a taste of excitement/challenge, the second because a novel
situation is a very noisy test of capacity, i.e., not a personal
challenge. Therefore, when both types are present in the
mind of the player they interfere positively to determine his
propensity to accept cooperation in the project. The game
tree is in figure 1.

Note that we simplified the tree in particular we did not
write out some of the branches which are never chosen. We
know that Bob’s θ1 always chooses Standard by definition
of the eigentype so we omitted the Inventive branch. We did
similarly for the τ types who both have simple strict prefer-
ences defining their choice. The doted line depicts equilib-
rium strategies.

As we can see in Figure 1 Nature plays twice and its
2nd move does not define the same probabilities at each
node. In the corresponding (first-hand) classical model,18

the type set of Bob is {θ1τ1, θ1τ2, θ2τ1, θ2τ1} . In the TI-
game there is no single probability distribution over that type
set, prob(θ1τ1|SAlice) �= prob(θ1τ1| IAlice). Indeed this
is the expression of the non-commutativity of Bob’s GS19.

18The corresponding first-hand classical model is defined as the
TI-game with the restriction that all type charcteristics of each
player are compatible with each other. It is identical to the TI-game
in all other respects.

19They cannot be merged into one single measurement

The probabilities of Nature’s 2nd move depend on Bob’s
strategy in GS1 (more precisely on whether his eigentypes
pool or not).

To see that our TI-Nash equilibrium (TINE) is not a Bayes
Nash equilibrium we must consider a probability distribu-
tion on the type set {θ1τ1, θ1τ2, θ2τ1, θ2τ1} . The distribu-
tion over {θ1, θ2} is given unambiguously. It is easy to show
that there does not exist a Bayesian equilibrium where Alice
plays Standard. Let q, , q ≥ 0 and (1 − q) be any distribu-
tion over {τ1, τ2}. We let Bob play as in the TINE, Alice’s
payoff from Standard is UA (S) = q100 while her payoff
from Intricate is UA(I) = q(0.6 · 120 + 0.4 · 170), which
simplifies to 100 < 140 for any q. Hence, given Bob’s play
Alice strictly prefers to play I. Hence, playing S as in the
TINE is not part of a Bayes Nash Equilibrium.

3.2 Nash equilibrium for non-commuting
TI-games

We next provide a general definition of the TINE, a concept
of Nash equilibrium that is standard in all respect but the
updating rule. Instead of the usual Bayesian updating con-
sistent with classical uncertainty we shall have an updating
rule that is consistent with quantum indeterminacy, we call
it QI-updating.

QI-updating in non-commuting multi-move games The
QI-updating rule can be presented when considering other
players’ beliefs about one single player who chooses two
actions in two successive non commuting GS.

Let the first GS be called A with a corresponding set of
actions {a1, ..., an} . It is a measurement of type character-
istics E

(
h0

)
=

{
e1

(
h0

)
, ..., em

(
h0

)}
where h0 is history

at time 0. The second GS be called B with a corresponding
set of actions {b1, ..., bn} it is a measurement of type char-
acteristics E(h1) =

{
e1

(
h1

)
, ..., em

(
h1

)}
. The assump-

tion is that E
(
h0

)
and E

(
h1

)
are two incompatible type

characteristics or equivalently A and B are non-commuting
measurements.

Step 1
Let |t〉 =

∑
i λi

∣∣ei

(
h0

)〉
be the common knowledge type

vector of our player. The initial beliefs are20

B0 : μ
(
ei

(
h0

))
= λ2

i , (3)

Assume we observe that our player chooses action a1. Let
s∗ (h1) be our player’s equilibrium strategy. The type vec-
tor

∣∣t (h1
)〉

, resulting from history h1 is, in terms of E
(
h0

)
eigenvectors : ∣∣t (h1

)〉
=

∑
i

λ′
i

∣∣ei

(
h0

)〉
(4)

where the sum is taken over i such that s∗
(
e1
i

(
h0

))
=

a1 and λ′
i = λiqP

k λ2
k(s∗

1(e1
k(h0))=a1

1)
. The updated beliefs

in term of the eigentypes of E
(
h0

)
are

20The beliefs are shared by all eigentypes of the other players.

74



B1 : μ
(
e1
i

(
h0

)∣∣ a1

)
= λ′2

i .21 (5)

Step 2
We must now express

∣∣t (h1
)〉

in terms of the eigen-
types of E

(
h1

)
.22 The translation is performed us-

ing a basis transformation matrix with elements δij =〈
ej

(
h1

)∣∣ ei

(
h0

)〉
. Collecting the terms, we can write

∣∣t (h1
)〉

=
∑

j

(∑
i

λ′
iδij

)∣∣ej

(
h1

)〉
The probability for eigentype e1

(
h1

)
at date t = 1 is

B2 : μ
(
e1

(
h1

)∣∣ a1

)
=

(∑
i

λ′
iδ1i

)2

(6)

This is the crucial formula that captures the key distinc-
tion between the classical and the quantum approach. B2 is
not a conditional probability formula where the δ2

ij are statis-
tical correlations between the eigentypes at the two stages.
The player is a non-separable system with respect to type
characteristics E

(
h0

)
and E

(
h1

)
. To see that this makes

a difference, recall our example. When Bob’s θ−types sep-
arate the probability for type τ1 (for Accept) is 0.48 while
when Bob’s θ−types pool it jumps to .96 - thanks to the
positive interference effects.

Thus, when considering a move a player must account not
only for the best-reply of his opponent as usual but also for
the induced resulting type of the opponent. More precisely,
type indeterminacy gives a new strategic content to pooling
respectively separating moves, a content that goes beyond
the informational one. When some eigentypes of a player
pool, that player remains indeterminate (superposed) with
respect to those eigentypes. This preserved indeterminacy
implies that in the next following (non-commuting) GS, the
superposed eigentypes may interact with each other produc-
ing interference effects that affect the probabilities for fu-
ture actions. Property B2 of the μ () function secures that
the players takes into account the impact of a play on the
resulting profile of types.

For each player i, history ht, eigentype ei
j (ht) and alter-

native strategy s′

P : ui

(
s|ht, ei

j

(
ht

)
, μ

(
., ht

)) ≥ ui

(
s′|ht, ei

j

(
ht

)
, μ

(
., ht

))
.

Definition 2 A TI-Nash equilibrium of a multi-stage game
is a pair (s, μ) that satisfies conditions P and B0-B2 above.

From our example we know that a TI-Nash equilibrium is
not necessarily a Bayes Nash equilibrium of the correspond-
ing first-hand classical game. In the corresponding classical
game the type characteristics θ and τ are compatible with
each other while the game is the same in all other respects.

21μ (ei (h0)| a1) is any probability
if

pP
k λ2

k (s∗1 (e1 (h0)) = a1) = 0.
22The potential eigentypes of each player must reason using the

expectation about the opponent’s play. That expected play is com-
puted from the best-replies of the opponent’s E

`
h1

´−eigentypes
and from their relative probability weights in the type vector˛̨
t

`
h1

´¸
.

4 Concluding remarks

This paper constitutes a first step in the development of a
theory of games with type indeterminate players. Compared
with conventional game theory the TI approach amounts to
substituting the standard Harsanyi type space for a Hilbert
space. We show that this has no implication for the analysis
of static games. In contrast in a multi-move context, we must
define an updating rule consistent with the algebraic struc-
ture of our type space. We show that for non-commuting
TI-games, it implies that players can manipulate each oth-
ers’ type thereby extending the field of strategic interaction.
Using the new updating rule we define an equilibrium con-
cept similar to the Bayes Nash equilibrium. We call it TI
Nash-equilibrium. We provide an example showing how the
two concepts differ.

We conjecture that the Type Indeterminacy approach may
bring new light on the a variety of issues including: coor-
dination in multiple equilibria situation, the selection of a
reference point or path-dependency.
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